2015

(6th Semester)

rani words in tas

PHYSICS 1997

(Mathematical Physics—II)

Full Marks: 75

Time: 3 hours

(PART: B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Define gamma function [with argument n, denote it by $\Gamma(n)$]. Discuss the fundamental properties of gamma function. 1+5=6bond the Boarder car or for too outp
 - (b) In connection with gamma function, prove the following: $2 \times 2 = 4$

(i)
$$\int_0^\infty e^{-\lambda x} x^{n-1} dx = \frac{\Gamma(n)}{\lambda^n} (\lambda, n > 0)$$

(ii)
$$\int_0^\infty e^{-x^2} x^{2n-1} dx = \frac{\Gamma(n)}{2} (n > 0)$$

0-5-2

Or

- (a) From the definition of beta function [denoted by $\beta(m, n)$ for arguments m and n], show that
 - (i) $\beta(m, n) = \beta(n, m)$

(ii)
$$\int_0^{\frac{\pi}{2}} \cos^{2m-1}\theta \sin^{2n-1}\theta \, d\theta = \frac{\beta(m,n)}{2}$$
 2+2=4

(b) Prove the following:

 $2 \times 3 = 6$

(i)
$$\int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \frac{\Gamma\left(\frac{n+1}{2}\right)\sqrt{\pi}}{2\Gamma\left(\frac{n}{2}+1\right)}$$

(ii) $\beta(m+1, n) + \beta(m, n+1) = \beta(m, n)$

(iii)
$$\beta(m, n+1) = \frac{n}{m+n}\beta(m, n)$$

- 2. (a) Explain Fourier series for a periodic function. State the conditions under which the Fourier series for a function converges to it.

 2+2=4
 - (b) Find the Fourier series for the output of a half-wave rectifier. From the series, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

$$4 + 2 = 6$$

(c) Using Laplace 1:70 form solve the 25.5

- (a) Deduce the Fourier integral for a function and express it in complex form.

 4+2=6
- (b) Define Fourier transform of a function. Show that the Fourier transform of the function $f(t) = e^{-at^2}$ is $g(\omega) = \frac{e^{-\omega^2/4a}}{\sqrt{2a}}$. 2+2=4
- 3. (a) Define Laplace transform of a function. Find the Laplace transform of (i) x^n and (ii) $\cos \alpha x$. 2+(2+2)=6
 - (b) Show that

s to somence of a

1

$$L\{f^{(n)}(x)\} = s^n L\{f(x)\} - \sum_{r=0}^{n-1} s^{n-1-r} f^{(r)}(0)$$

where $L\{f(x)\}\$ is the Laplace transform of f(x) with respect to the kernel $e^{-sx}(s>0)$

and
$$f^{(n)}(x) = \frac{d^n}{dx^n}(f(x)).$$

Or

(a) Use Laplace transform to show that:

$$\int_0^\infty \frac{\sin xt}{t} dt = \frac{\pi}{2}$$

(b) Find the inverse Laplace transform of

$$F(s) = \frac{2s+1}{s^2 - 5s + 6}$$

www.gzrsc.edu.in

G15-250/335a

Turn Over)

(c) Using Laplace transform, solve the differential equation $y'' + 2y' + y = e^{-x} \sin x$ with y(0) = 0, y'(0) = 3. Here $y' = \frac{dy}{dx}$

and $y'' = \frac{d^2y}{dx^2}$.

- 4. (a) Define a cyclic group. Show that cyclic groups are Abelian. 1+2=3
 - (b) Show that the inverse of an element of a group is unique.
- of a given order forms a group under matrix multiplication.
 - (d) Define a subgroup of a group. What are the subgroups that a group possesses as trivial cases?

 1+1=2

Or

Explain what you understand by symmetry operations and symmetry elements of a body. Discuss different types of symmetry operations and symmetry elements of a symmetric body.

2+2+6=10

5. (a) What do you mean by a variable in FORTRAN? What are different types of variables in FORTRAN? State the general rules for naming a variable in FORTRAN programing.

1+2+2=5

G15—250/335a www.gzrsc.edu.in

4

3

(b) Find the value of A after the following program segment in FORTRAN is executed:

2

(c) Write a simple FORTRAN program to convert the temperature of a body in Celsius scale to that in Fahrenheit scale.

Or

- (a) Explain DO-loops in FORTRAN. Write a FORTRAN program to evaluate the sum of first 100 natural numbers using a DO-loop.

 3+3=6
- (b) Consider the function

$$f(x) = \begin{cases} x^2 + \sin 2x & \text{if } x < 3.0\\ 10.3 & \text{if } x = 3.0\\ x^3 - \cos 3x & \text{if } x > 3.0 \end{cases}$$

Write a FORTRAN program to evaluate f(x) for different values of x. What is the value of the function for x = 1.5708? 3+1=4

2015

(6th Semester)

PHYSICS

NINTH PAPER

(Mathematical Physics—II)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks: 10)

Tick (✓) the correct answer in the brackets provided: 1×10=10

- 1. The value of $\Gamma(\frac{1}{2})\Gamma(-\frac{1}{2})$ is
 - (a) $2\sqrt{\pi}$
 - (b) $-2\sqrt{\pi}$ ()
 - (c) $\frac{\sqrt{\pi}}{2}$ ()
 - (d) $-\frac{\sqrt{\pi}}{2}$

		TT 8			$x^4 - x$.
2.	The	value	of the	integral	$\int_0^\infty \frac{x^4 - x}{(1+x)^7} dx \text{ is}$
			• •		(1 + X)

3. The fourier series for an odd function contains

(a)	only	the	cosine	terms	()
-----	------	-----	--------	-------	---	---

4. If $\delta(x)$ denotes the Dirac delta function, then

(a)
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = 0$$
 ()

(b)
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = 1$$
 ()

(c)
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$$
 ()

(d)
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(x)$$
 ()

5.		the kernel of the Laplace transform x is e^{-sx} , then the Laplace transform		
4	(a) (b)	0 0 ()		
		$\frac{1}{s}$ ()		
	(d)	$\frac{1}{s}$ ()		
6.		$F(s)$ is the Laplace transform of verse Laplace transform of $F\left(\frac{s}{a}\right)$ is		1987 (883)
	(a)	af(ax) ()		
	(b)	$\frac{1}{a}f(ax)$ ()		
	(c)	$af\left(\frac{x}{a}\right)$ ()		
	(d)	$\frac{1}{a}f\left(\frac{x}{a}\right)$ ()		
7.		G is a group of order g and H is interpolation G , then which of the following is a	•	f
	(a)	g is an integral multiple of h		
		h is an integral multiple of g		
	(c)	g and h have no specific relation	n ()	
	(d)	g is an odd multiple of h ()	

8.	The	symme	etry	poin	t gr	oup	for	amn	nonia	(NH ₃)
	mo	lecule is	3 %				(10.1)		* 3. *\	
	(a)	C_3	()						
	(b)	D_3	()						- (e)
	(c)	C_3v	()						
	(d)	D_3h	()						
9.	Wh	ich of th RTRAN?		llowii	ng is	a va	alid	varia	ble na	ame in
	(a)	A * 123		()					
	(b)	123 * A		()			1		1 1 (4)
	(c)	123 A		()					
	(d)	A 123		()					
10.	In nur	FORTRA	obt	aine	d by					
	(a)	IMAG (Z	;)	()					
	(b)	AIMAG	(Z)	(114				
	(c)	BIMAG	(Z)		()					
	(d)	CIMAG	(Z)		()					

SECTION—II

(Marks: 15)

Answer the following questions:

3×5=15

1. Prove that
$$\int_0^\infty \frac{x^{m-1}}{(ax+b)^{m+n}} dx = \frac{\Gamma(m)\Gamma(n)}{a^m b^n \Gamma(m+n)}.$$

2. Express the Fourier series for a function in complex form

 If L(f(x)) is the Fourier transform of f(x) with respect to the kernel e^{-ax}, then show that

$$L \begin{vmatrix} \cos ax & \cos bx \\ b^2 - a^2 \end{vmatrix} = \frac{s}{(s^2 + a^2)(s^2 + b^2)} (a^2 \cdot b^2)$$

4. Prove that no element can be common to any two distinct classes of a group.

5. Write a FORTRAN program that can be used to find the factorial of a positive integer

...