2015

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—I)

Full Marks: 75

Time: 3 hours

(PART : B-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Assuming $u = u(r, \theta)$, write down the two-dimensional Laplace's equation in polar coordinates and find its general solution. 1+4=5
 - (b) Obtain the series solution of the differential equation

$$2x^2y'' - xy' + (1 - x^2)y = 0$$

G16/129a

(Turn Over)

Or

(a) Solve the heat diffusion equation

 $\frac{\partial \theta}{\partial t} = h^2 \frac{\partial^2 \theta}{\partial x^2}$

under boundary conditions

$$\theta(0, t) = \theta(l, t) = 0, t > 0$$

and $\theta(x, 0) = x$, 0 < x < l

where l is the length of the rod.

(b) Obtain the D'Alembert's solution of the wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

in a vibrating string, where c is the wave velocity.

2. (a) Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$, where $J_{1/2}(x)$ represents Bessel's function.

(b) Prove the following recurrence relations: 4+4=8

(i)
$$xJ'_n(x) = nJ_n(x) - xJ_{n+1}(x)$$

(ii)
$$xJ'_n(x) = -nJ_n(x) + xJ_{n-1}(x)$$

G16/129a

(Continued)

6

4

2

Or

- (a) Using Rodrigues' formula for $P_n(x)$, show that—
 - (i) $\int_{-1}^{1} P_0(x) dx = 2$;
 - (ii) $\int_{-1}^{1} P_n(x) dx = 0$, $(n \neq 0)$.
- (b) Show that $H_n(x)$ is the coefficient of z^n in the expansion of $e^{x^2-(z-x)^2}$.
- 3. (a) Check whether the functions (i) f(z) = |z| and (ii) $f(z) = z^{-1}$ are analytic functions.
 - (b) By contour integration, prove that

$$\int_0^\infty \frac{\sin mx}{x} \, dx = \frac{\pi}{2}$$

Or

(a) Find the residues of

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$

at all its poles.

4

2+2=4

(Turn Over)

(b) Use residue theorem to evaluate

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta}$$

where a > b > 0. Hence show that

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = \frac{2\pi}{\sqrt{3}}$$
 5+1=6

- 4. (a) Obtain the expression for \$\vec{\psi}\$\psi\$ (where \$\psi\$ is a scalar) in orthogonal curvilinear coordinate system. Hence, find its expression in cylindrical and spherical polar coordinates.
 - (b) Show that the cylindrical coordinate system is orthogonal.

Or

(a) What do you mean by covariant and contravariant tensors? Show that the gradient of a scalar function and velocity are respectively a covariant and a contravariant tensor both of rank 1.

(b) Show that if A^i and B^j are two contravariant vectors, then the n^2 quantities $C^{ij} = A^i B^j$ are the components of a contravariant tensor of rank 2.

3

4

(5)

- (c) How many components does the tensor A_{kl}^{ij} have in three-dimensional space?
 - 4
- 5. (a) Find the inverse of the matrix
 - $A = \begin{pmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{pmatrix}$
 - (b) Solve the following simultaneous equations by matrix method: 4

$$2x-3y+z=9$$
$$x+y+z=6$$
$$x-y+z=2$$

(c) Show that the matrix

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$

is unitary.

2

Or

(a) Diagonalize the matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

4

G16/129a

(Turn Over)

(b) Find the eigenvalues and normalized eigenvectors of the matrix

 $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$

(c) If A and B be two Hermitian matrices, then show that—

- (i) AB + BA is Hermitian;
- (ii) AB BA is skew-Hermitian.

2015

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—I)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks: 10)

Put a Tick (✓) mark against the correct answer in the brackets provided: 1×10=10

 The differential equation of a circle having origin at (0, 0) and radius r is

(a)
$$x^2 + y^2 = r^2$$
 ()

(b)
$$x dx + y dy = 0$$
 ()

(c)
$$y dx + x dy = 0$$
 ()

(d)
$$x dx - y dy = 0$$
 ()

2. Consider the equation

$$x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

Here x = 0 is

141 5111 11

- (a) an ordinary point ()
- (b) a regular singular point ()
- (c) an irregular singular point ()
- (d) None of the above ()

3. Which of the following values of the Hermite polynomial is correct?

- (a) $H_0(x) = x$ ()
- (b) $H_1(x) = 2x^2$ ()
- (c) $H_n(-x) = (-1)^n H_n(x)$ ()
- (d) $H_{2n}(0) = 0$ ()

4. Which of the following values of the Legendre polynomial is not correct?

- (a) $P_n(1) = 1$ ()
- (b) $P_n(-1) = (-1)^n$ ()
- (c) $P_n(-x) = (-1)^n P_n(x)$ ()
- (d) $P_{2n}(-x) = -P_{2n}(x)$ ()

V/PHY (v)/129

- 5. If C is the circle defined by |z| > 1, then the value of the integral $\oint_C \frac{dz}{z^2 + z}$ is
 - (a) 0 ()
 - (b) 2π ()
- (c) 2πi ()
 - (d) $-2\pi i$ ()
- **6.** If $z = e^{i\theta}$, then $\cos \theta$ is given by
 - (a) $z + \frac{1}{z}$ (
 - (b) $\frac{1}{2}\left(z+\frac{1}{z}\right)$ ()
 - (c) $z \frac{1}{z}$ ()
 - (d) $\frac{1}{2}\left(z-\frac{1}{z}\right)$

V/PHY (v)/129

7. In curvilinear coordinate system (u_1, u_2, u_3) , the divergence of a vector field \vec{A} is given by

(a)
$$\vec{\nabla} \cdot \vec{A} = \left[\frac{\partial A_1}{\partial u_1} + \frac{\partial A_2}{\partial u_2} + \frac{\partial A_3}{\partial u_3} \right]$$
 (

(b)
$$\vec{\nabla} \cdot \vec{A} = \left[\frac{\partial}{\partial u_1} \left(A_1 h_2 h_3 \right) + \frac{\partial}{\partial u_2} \left(A_2 h_1 h_3 \right) + \frac{\partial}{\partial u_3} \left(A_3 h_1 h_2 \right) \right]$$

(c)
$$\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial A_1}{\partial u_1} (h_2 h_3) + \frac{\partial A_2}{\partial u_2} (h_1 h_3) + \frac{\partial A_3}{\partial u_3} (h_1 h_2) \right]$$

(d)
$$\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (A_1 h_2 h_3) + \frac{\partial}{\partial u_2} (A_2 h_1 h_3) + \frac{\partial}{\partial u_3} (A_3 h_1 h_2) \right]$$

- **8.** Let a_{ij} be the components of a tensor of rank 2. We can express a_{ij} as $a_{ij} = A_{ij} + B_{ij}$. Then
 - (a) both A_{ij} and B_{ij} are symmetric tensors ()
 - (b) both A_{ij} and B_{ij} are anti-symmetric tensors ()
 - (c) A_{ij} is symmetric, B_{ij} is anti-symmetric and both are of rank 2 ()
 - (d) A_{ij} is symmetric, B_{ij} is anti-symmetric and both are of any rank ()

9. The matrix

$$\begin{pmatrix} 0 & 1+i \\ -1+i & 0 \end{pmatrix}$$

is

- (a) Hermitian ()
- (b) skew-Hermitian ()
- (c) unitary ()
- (d) both Hermitian and unitary ()

10. The inverse of the matrix

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{pmatrix}$$

is

(a)
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 ()

(b)
$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 ()

(c)
$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
 ()

(d)
$$\begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$$
 ()

SECTION—II

(Marks : 15)

Give short answers to the following questions:

3×5=15

1. Show that $y = e^x (a \cos x + b \sin x)$ is a solution of the differential equation y'' - 2y' + 2y = 0.

 Write the Rodrigues' formula for Hermite polynomial and hence find the values of H₁(x) and H₂(x). 3. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in a Laurent series valid for 1 < |z| < 2.

4. If a contravariant tensor of rank 2 is symmetric in one coordinate system, then show that it is symmetric in any other coordinate system.

 Show that the eigenvalues of conjugate matrices are equal.

G16-350/129