2014

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—I)

Full Marks: 75

Time: 3 hours

(PART : B-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Explain Frobenius method for solving a second-order ordinary differential equation.
 - (b) Solve the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - m^{2})y = 0$$

by Frobenius method.

7

3

G15-250/133a

(Turn Over)

OR

- (a) Discuss the method of separation of 'variables for solving a partial differential equation.
- (b) Use the method of separation of variables to solve the equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

with boundary conditions

$$y(0, t) = 0 = y(l, t)$$

4

2

2. (a) The generating function for Legendre polynomials $P_n(x)$ is

$$g(x, t) = \frac{1}{\sqrt{1-2xt+t^2}}$$

such that
$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} t^n P_n(x)$$
.

Show that
$$P_n(-x) = (-1)^n P_n(x)$$
.

(b) Use the generating function for $P_n(x)$ to establish the following recurrence relations:

(i)
$$(2n+1)xP_n(x) - nP_{n-1}(x) = (n+1)P_{n+1}(x)$$

(ii)
$$P'_{n+1}(x) = P_n(x) + 2xP_n(x) - P'_{n-1}(x)$$

G15-250/133a

1

ass (Continued)

OR

For Hermite polynomials $H_n(x)$, show (a) that $H'_n(x) = 2nH_{n-1}(x)$.

3

(b) Deduce the integral representation for the Bessel functions $J_n(x)$ as

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x \sin \theta) d\theta$$

What will be the integral representation of $J_{\Omega}(x)$? 6 + 1 = 7

3. (a) Deduce the Cauchy-Reimann conditions for the analyticity of a function of complex variable.

4

and prove Cauchy integral (b) State theorem.

4

the Laurent Write down (c) expansion of a function of complex variable.

2

OR

A complex function f(z) has the form (a) $f(z) = \frac{\phi(z)}{w(z)}$

> If z_0 is a simple pole for f(z) such that $\psi(z_0) = 0$ but $\psi'(z_0) \neq 0$, then show that the residue of f(z) at z_0 is given by

$$R = \frac{\phi(z_0)}{\text{www.gz}(z_0)} \text{u.in}$$

(b	If $f(z) = \frac{z}{z^2 - 1}$ is a complex function, find its singular points and calculate the residues at those	
(c)	residues at those points. Apply residue theorem to evaluate the integral $\int_{-\infty}^{\infty} \frac{e^{\alpha x}}{e^x + 1} dx (\alpha < 1) \text{ using a}$	3
	rectangular contour.	5
4. (a)	Discuss the two sets of unit vectors in a curvilinear coordinate system (u_1, u_2, u_3) .	4
<i>(b)</i>	Deduce the expressions for the divergence and curl of a vector field in	
t)	spherical polar coordinates. 3+3	3=6
(a)		
(4)	Explain what you mean by symmetric and skew-symmetric tensors.	3
(b)	Show that contraction of a tensor results in a new tensor of rank 2 less than that of the original tensor.	2
(c)	If A^{α} and B_{β} are the components of a contravariant and a covarient vectors	2
	respectively, then show that their outer product $A^{\alpha}B_{\beta}$ is a mixed tensor of rank 2.	2
(d)	Show that the kronecker delta δ^i_j is a	3
	mixed tensor of rank 2.	2
15-250	/133a	

5. (a) Show that any square matrix can uniquely be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

4

(b) If A is a non-singular square matrix of order n, then show that

$$|\operatorname{adj} A| = |A|^{n-1}$$

where |adj A | is the determinant of adj A. 4

(c) Prove that the product of two or more orthogonal matrices of same rank is also an orthogonal matrix.

2

OR

(a) Solve the following simultaneous equations by matrix method:

4

$$2x+3y+4z=9$$
$$2y+3z=8$$
$$x-z=-3$$

(b) Diagonalize the matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

4

(c) Show that Tr(AB) = Tr(BA), where A and B are two matrices conformable for the products AB and BA, and Tr(AB) is the trace of the matrix AB.

2

EELY(V) YIT

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—I)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks: 10)

Put a Tick (1) mark against the correct answer in the 2. (0 xm.) (4 to) notsepter 1×10=10 brackets provided:

1. If x_0 is an ordinary point of the second-order ordinary differential equation

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

then its power series solution has the form (d) : 13 mg (d + 1)

(a)
$$\sum_{r=0}^{\infty} a_r (x - x_0)^r$$
 ()

(b)
$$\sum_{r=0}^{\infty} a_r (x-x_0)^{k+r} = \lim_{x \to \infty} (x)^{n+1} \lim_{x \to \infty} (x)^{n+1} = \lim_{x \to \infty$$

(c)
$$\sum_{r=0}^{\infty} a_r (x-x_0)^{k-r}$$
 ()

(c)
$$\sum_{r=0}^{\infty} a_r (x - x_0)^{k-r}$$
 ()

(d) $\sum_{r=0}^{\infty} a_r (x - x_0)^{-k-r}$ ()

2. Laplace's equation for the scalar V in two-dimensional Cartesian coordinates is

(a)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$
 ()

(b)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \rho(x, y)$$
 (4)

$$\operatorname{sm}(c) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial V}{\partial y} = 0$$
 and $\operatorname{Ind}(\operatorname{color})$ beding $\operatorname{grain}(a) = 0$ and $\operatorname{color}(a) = 0$.

(d)
$$\frac{\partial V}{\partial x} + \frac{\partial^2 V}{\partial y^2} = \rho(x, y)$$
 (val)

3. The expression for $P_2(\cos\theta)$ is

(a)
$$1\cos\theta$$
 no second continuous of the) second $\cos\theta$

(b)
$$\frac{1}{2}\cos^2\theta$$
 ()

(c)
$$\frac{1}{2}(3\cos^2\theta - 1)$$
 ()

(d)
$$\frac{1}{2}(3\cos^2\theta + 1)$$
 ()

4. In Hermite polynomial $H_n(x)$, the coefficient of x^n is

(c)
$$n^2$$
 ()

$$(d) 2^n$$

V/PHY (v)/133

-x-(0x - x) - x

- 5. If C is the circle |z| = 2, then the value of the integral $\oint_C \frac{z^2}{z-1} dz$ is
 - (a) $-2\pi i$ ()
 - (b) $2\pi i$ ()
 - (c) -2π ()
 - (d) 2π ()
- **6.** If the point z_0 is a pole of order n for a complex function f(z), then the residue of f(z) at z_0 is
 - (a) $\frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)]_{z=z_0}$ ()
 - (b) $\frac{1}{n!} \frac{d^n}{dz^n} [(z-z_0)^n f(z)]_{z=z_0}$ ()
 - (c) $\frac{1}{(n+1)!} \frac{d^{n+1}}{dz^{n+1}} [(z-z_0)^n f(z)]_{z=z_0}$ ()
 - (d) $\frac{1}{(n+1)!} \frac{d^n}{dz^n} [(z-z_0)^n f(z)]_{z=z_0}$ ()

PERVIOUS HIGHLY

7. In curvilinear coordinate system (u_1, u_2, u_3) , the gradient of a scalar field V is

(a)
$$\sum_{i=1}^{3} \frac{\hat{e}_i}{h_i} \frac{\partial V}{\partial u_i}$$
 ()

(b)
$$\sum_{i=1}^{3} \hat{e}_i \frac{\partial V}{\partial u_i} \qquad ()$$

(c)
$$\sum_{i=1}^{3} \hat{e}_i h_i \frac{\partial V}{\partial u_i} \qquad ()$$

(d)
$$\sum_{i=1}^{3} \hat{e}_i \frac{\partial}{\partial u_i} (h_i V) \qquad ()$$

8. The contour C encloses the singular points $z_1, z_2, z_3, ..., z_n$ for the complex function f(z). The residues of f(z) at these points are $R_1, R_2, R_3, ..., R_n$ respectively. The value of the integral $\oint_C f(z) dz$ is

se make of arrior

(a)
$$\pi i (R_1 + R_2 + R_3 + ... + R_n)$$
 ()

(b)
$$2\pi i (R_1 + R_2 + R_3 + ... + R_n)$$
 ()

(c)
$$\frac{\pi i}{2}(R_1 + R_2 + R_3 + ... + R_n)$$
 ()

(d)
$$\frac{\pi}{2i}(R_1 + R_2 + R_3 + ... + R_n)$$
 ()

9.	The	diagonal	elements	of	а	skew-symmetric	matrix
	are						

(a) all non-zero ()

(b) all zero ()

(c) all purely imaginary ()

(d) all complex ()

10. The eigenvalues of a square matrix of order 2 are λ_1 and λ_2 . The trace of the matrix is

(a) 0 ()

(b) $\lambda_1 - \lambda_2$ ()

(c) $\lambda_1 + \lambda_2$ ()

(d) $\lambda_1\lambda_2$ ()

SECTION-II

(Marks: 15)

Give short answers to the following questions:

 $3 \times 5 = 15$

1. Explain what you mean by ordinary points and singular points for a second-order ordinary differential equation.

2. For integral values of n, show that $J_{-n}(x) = (-1)^n J_n(x)$, where $J_n(x)$ is the Bessel function.

3. Identify the singular points for the complex function $f(z) = \frac{2z^2}{4-z^2}$ and calculate the residues of f(z) at those singular points.

4. Explain Einstein's summation convention. Give an example.

5. Show that the eigenvalues of a Hermitian matrix are all real.

...