2015

(6th Semester)

MATHEMATICS

Paper: Math-363

(Mechanics)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions taking one from each Unit

UNIT-I

1. (a) Show that a system of coplanar forces acting at different points of a rigid body can be reduced to a single force R through an arbitrary point and a couple G. Further show that the system can be reduced to a single resultant and find the equation of the line of action of the final 5+2=

www.gzrsc.edu.in

- (b) Forces of magnitudes 2, $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ act along the lines x = 0, y = 0 and x + y = 2. Find the magnitude of the resultant.
- 2. (a) Two systems of forces P, Q, R and P', Q', R' act along the sides BC, CA, AB of a triangle ABC. Prove that their resultant will be parallel if

 $(QR'-Q'R)\sin A + (RP'-R'P)\sin B + (PQ'-P'Q)\sin C = 0$

(b) A beam whose centre of gravity divides it into two portions a and b, is placed inside a smooth sphere. Show that if θ be the inclination to the horizon in the position of equilibrium and 2α be the angle subtended by the beam at the centre of the sphere, then

$$\tan \theta = \frac{b-a}{b+a} \tan \alpha$$

UNIT-II

3. (a) A thin uniform wire is bent into the form of a ΔABC and heavy particles of weight P, Q, R are placed at the angular points. Prove that if the centre of mass of the particle coincides with that of the wire, then

$$\frac{P}{b+c} = \frac{Q}{c+a} = \frac{R}{a+b}$$
www.gzrsc.edu.in

5

3

5

(Continued)

(b) If a piece of wire is bent into a shape of an isosceles triangle whose sides are a and b. Show that the distance of the CG from the base is the following the larger

and the whole
$$\frac{a}{2}\sqrt{\frac{2a-b}{2a+b}}$$
 is a finite $\frac{a}{2}\sqrt{\frac{2a-b}{2a+b}}$

- 4. (a) From a circular disc of radius r is cut out a circle described on a radius of the disc diameter. Find the CG of the remainder.
 - (b) Find the CG of a uniform semicircular 5

an III—TINU per od bend the

- 5. (a) For a particle moving in a plane curve, show that the radial and transverse acceleration components are given by $f_r = \ddot{r} - r\dot{\theta}^2$ and $f_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$.
 - (b) A point moves in a plane, so that the tangential and normal acceleration are equal and the angular velocity of the tangent is constant and equal to k. Show that the path is equiangular spiral $k_s = Ae^{\Psi} + B$, where A and B are constants. www.gzrsc.edu.in

(Turn Over)

5

5

5

6. (a) A train travels a distance s in t sec, if it starts from rest and ends at rest. In the first part of the journey it moves with a constant acceleration f and in the second part with a constant retardation f'. Show that if s is the distance between two stations, then

$$t = \sqrt{2s\left(\frac{1}{f} + \frac{1}{f'}\right)}$$

(b) A point execute simple harmonic motion such that in two of its positions the velocities are u, v and the corresponding accelerations are α , β . Show that the distance between the positions is $\frac{v^2-u^2}{\alpha+\beta}$, and the period and the amplitude of the motion are respectively

$$2\pi\sqrt{\frac{u^2-v^2}{\beta^2-\alpha^2}}$$
 and $\frac{\{(v^2-u^2)(\alpha^2v^2-\beta^2u^2)\}^{\frac{1}{2}}}{(\beta^2-\alpha^2)}$.

UNIT-IV

7. (a) A particle is projected with initial velocity
V from a point O at an angle of elevation α.
Show that the range of the plane

through O inclined at an angle β to the horizontal $\left(\beta < \alpha < \frac{\pi}{2}\right)$ is

$$\frac{V^2}{g\cos^2\beta}[\sin(2\alpha-\beta)-\sin\beta]$$

and hence deduce that for a given velocity of propagation V, the maximum range is

$$\frac{V^2}{g(1+\sin\beta)}$$

(b) A particle is projected from a point O at an angle of elevation α and after t sec it has an elevation β as seen from the point of projection. Prove that its initial velocity is

$$\frac{gt\cos\beta}{2\sin(\alpha-\beta)}$$

8. (a) A particle is projected vertically upwards with a velocity u against a resistance proportional to the square of the velocity. If V is the terminal velocity of the body and m is its mass, show that, when the body has fallen back to the point of projection, the loss of KE is

$$\frac{1}{2}mu^2\left(\frac{u^2}{V^2+u^2}\right)$$

www.gzrsc.edu.in

(b) A body projected at an angle α to the horizon, so as just to clear two walls of equal height a at a distance 2a from each other. Show that the range is equal to

$$2a\cot\left(\frac{\alpha}{2}\right)$$
 5

UNIT-V

9. (a) A shot of mass m is fired horizontally from a gun of mass M with a velocity u relative to the gun. Show that the actual velocities of the shot and the gun are

$$\frac{Mu}{M+m}$$
 and $\frac{mu}{M+m}$

respectively, and that their kinetic energies are inversely proportional to their masses.

(b) A ball A of mass m_1 impinges directly on another ball B of mass m_2 , which is at rest. After the impact, B impinges directly on a third ball C of mass m_3 which is also at rest. If the velocity imparted to C is the same as A had at first, and if all the balls are perfectly elastic, show that

$$(m_1 + m_2)(m_2 + m_3) = 4m_1m_2$$

5

5

www.gzrsc.edu.in

10. (a) Two balls whose masses are m and m' moving in the direction making angles α and α' with the line of centres, collide. If their direction of motion after the impact be perpendicular to their direction before impact, prove that

$$e = \frac{m\sin^2 \alpha' + m'\sin^2 \alpha}{m\cos^2 \alpha' + m'\cos^2 \alpha}$$

(b) A smooth sphere of mass m travelling with velocity u impinges obliquely on a smooth sphere of mass M at rest, the original line of motion of the first sphere making an angle θ with the line of centres at the moment of impact. If the coefficient of restitution be e, show that the impinging sphere will be deflected through a right angle if

$$\tan^2\theta = \frac{eM - m}{M + m}$$

and that its velocity perpendicular to its original line of motion will be obtained if $\theta = 45^{\circ}$.

5

2015

(6th Semester)

MATHEMATICS

Paper: Math-363

(Mechanics)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks: 10)

Put a Tick ✓ mark against the correct answer in the box provided: 1×10=10

- 1. If a body rests in limiting equilibrium on a rough inclined plane for which the coefficient of friction is $\frac{1}{4}$, then the angle of friction is
 - (a) $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{4}\right)$
 - (b) $\pi + \tan^{-1}\left(\frac{1}{4}\right)$
 - (c) $\tan^{-1}\left(\frac{1}{4}\right)$
 - (d) None of the above

2. Three coplanar forces acting upon a rigid body represented in magnitude, direction and sense by the sides of a triangle taken in order are equivalent to
 (a) a single force of magnitude equal to twice the area of the triangle
(b) a couple of moment equal to twice the area of the triangle
(c) a couple of moment equal to the area of the triangle
(d) a single force of magnitude equal to the area of the triangle □
3. The CG of a triangle formed by three rods is
(a) the incentre of the triangle ABC
(b) the incentre of the triangle formed by joining the midpoints of the side of triangle ABC
(c) the centroid of the triangle ABC
(d) the orthocentre of the triangle ABC
4. The MI of a uniform thin rod of length 2a and of mass M about an axis through the midpoint and perpendicular to the rod is
(a) $\frac{1}{3}Ma^2$
(b) $\frac{1}{2}Ma^2$
(c) $\frac{1}{4}Ma^2$
(d) None of the above

5.	For	or a particle executing SHM of period $\frac{\pi}{10}$ sec and						
	amplitude 5 cm, the maximum velocity attained is							
	(a)	50 cm/sec						
	(b)	5 cm/sec					4	
	(c)	10 cm/sec						
6.	(d)	100 cm/sec			- A - A - A - A - A - A - A - A - A - A			
	If the rate of change of direction of velocity of a particle moving in cycloid is constant, then							
	(a)	tangential acce	eleration	is const	ant			
	(b)	normal acceler	ation is c	onstan	<u>.</u>			
	(c)	resultant accel	eration is	s consta	ınt			
	(d)	None of the ab	ove					
7.	If R_1 , R_2 are the horizontal ranges of two projectil projected with the same velocity u from the same point making angles 30° and 60° respectively with the horizontal, then							
	(a)	$R_1 = R_2$						
	(b)	$R_1 = 2R_2$		(7)	•			
	(c)	$2R_1 = R_2$		٠				
	(d)	None of the abo	ove			31.57.	(3)	

DI

8.	The equation of motion of a particle of mass m falling						
	from a point under gravity and resistance	equal to					
	mk(velocity) ² is						

(a)
$$\ddot{x} = g + kv^2$$

(b)
$$\ddot{x} = -g + kv^2$$

(c)
$$\ddot{x} = -g - kv^2$$

(d)
$$\ddot{x} = g - kv^2$$

9. A smooth sphere of mass m strikes a plane normally and is rebounded. If e is the coefficient of restitution, then the loss of its KE is

(a)
$$\frac{1}{2}me^2u^2$$

(b)
$$\frac{1}{2}mu^2$$

(c)
$$\frac{1}{2}m(1+e^2)u^2$$

(d)
$$\frac{1}{2}m(1-e^2)u^2$$

10. A smooth sphere impinges directly with velocity u on another smooth sphere of equal mass at rest. If the spheres are perfectly elastic, the velocity of second sphere after collision will be

(c)
$$\frac{u}{2}$$

SECTION-II

(Marks: 15)

Answer the following questions:

 $3 \times 5 = 15$

1. Find the least force required to pull up a body of mass 50 gm on an inclined plane inclined at an angle 60° to the horizontal.

2. Find the centre of gravity of a segment of a circle.

 if a particle moves in a plane with constant speed, prove that its acceleration is always perpendicular to its velocity. 4. If a particle is projected with a velocity u from the ground at an angle a with the horizontal, prove that the time to reach the greatest height is

S. A sphere impinges directly on an equal sphere at rest. If the coefficient of restitution be e, show that their velocities after impact are as (1 - e): (1 + e).

...