2014

(6th Semester)

MATHEMATICS

Paper No.: Math-363

(Mechanics)

Full Marks: 75

Time: 3 hours

(PART : B-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

1. (a) Forces P, Q, R act along the sides of the triangle formed by the lines x+y=1, y-x=1 and y=2. Find the magnitude of the resultant and the equation of the line along which it acts.

5

14G-200/563a

(Turn Over)

(b) If the algebraic sums of the moments of all the coplanar forces acting on a rigid body about three non-collinear points be separately zero, then prove that the body is in equilibrium.

5

2. (a) A uniform ladder is in equilibrium with one end resting on the ground and the other end against a vertical wall; if the ground and wall be both rough, the coefficient of friction being μ and μ' respectively, and the ladder be on the point of slipping at both ends, then show that the inclination of the ladder to the horizon is given by

$$\tan\theta = \frac{1 - \mu \mu'}{2\mu}$$

(b) Two rough particles connected by a light string rest on an inclined plane. If their weights and corresponding coefficient of frictions are w_1, w_2 and respectively, then show that the greatest inclination of the plane for equilibrium is

$$\tan^{-1}\left(\frac{\mu_1 w_1 + \mu_2 w_2}{w_1 + w_2}\right)$$

UNIT-II

3. (a) If a triangular lamina ABC hangs at rest with one of the angles A being supported at a fixed point, then prove that the angle which the lower side makes with the horizon is

$$\tan^{-1}\left\{\frac{1}{2}(\cot B - \cot C)\right\}.$$
 5

- (b) Find the centre of gravity of a uniform arc of a quadrant of the circle $x^2 + y^2 = a^2$ in the positive quadrant.
- 4. (a) If a square hole is punched out of a circular lamina, the diagonal of the square being the radius of the circle, then show that the centre of gravity of remainder is at a distance $\frac{a}{8\pi 4}$ from the centre of the circle, where a is its diameter.

(b) State and prove the theorem of parallel axes of the moment of inertia about a rigid body.

UNIT-III

5. (a) Find out the tangential and normal components of acceleration of a particle moving in a plane curve.

14G-200/563a

(Turn Over)

5

5

5

(b) A particle rests in equilibrium under the attraction of two centres of force which attract directly as the distance, their intensities being μ and μ'. The particle is displaced slightly towards one of them. Show that the time of a small oscillation is

$$\frac{2\pi}{\sqrt{\mu + \mu'}}$$

5

6. (a) Two cars start off to race with velocities u and v, and travel in a straight line with uniform accelerations α and β. If the two cars reached the finish line at the same time, then show that the length of the course is

$$\frac{2(u-v)(u\beta-v\alpha)}{(\alpha-\beta)^2}$$

5

(b) The speed of a train increases at a constant rate α from o to v, then remains constant for an interval and finally decreases to zero at a constant rate β. If l be the total distance described, prove that the total time occupied is

$$\frac{l}{\nu} + \frac{\nu}{2} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)$$

Also find the least value of time when $\alpha = \beta$.

UNIT-IV

7. (a) A particle is projected from a point on the ground level and its height is h; when it is at horizontal distance a and 2a from its point of projection, prove that the velocity of projection is given by

$$u^2 = \frac{g}{4} \left[\frac{4a^2}{h} + 9h \right]$$

- (b) If at any instant the velocity of the projectile be u and its direction of motion α to the horizon, then show that the projectile will move at right angles to this direction after the time u cosec α / g.
- 8. (a) A particle of mass m is falling from a point under gravity in a medium whose resistance is mk (velocity). Find the distance of the particle after time t and show that the terminal velocity is never attained by the particle.
 - (b) A particle of mass m; is projected vertically under gravity; the resistance of the air being mk times the velocity. Show that the greatest height attained by the particle is $\frac{V^2}{g}[\lambda \log(1+\lambda)]$, where V is the terminal velocity of the particle and λV is its initial vertical velocity. Show that the corresponding time is $\frac{V}{a}\log(1+\lambda)$.

14G-200/563a

(Turn Over)

5

5

5

UNIT-V

9. (a) Deduce work-energy equation.

5

(b) A particle falls from a height h upon a fixed horizontal plane. Show that the whole distance described by the particle before it has finished rebounding is

$$\frac{1+e^2}{1-e^2}h$$

where e is the coefficient of restitution. Also prove that the time that elapses is

$$\sqrt{\frac{2h}{g}}\left(\frac{1+e}{1-e}\right)$$

5

10. (a) Find the loss of kinetic energy in the direct impact of collision of two spheres.

5

(b) A sphere m_1 impinges obliquely on another sphere m_2 which is at rest. If $m_1 = em_2$, then show that they will move at right angles to each other.

5

2014

(6th Semester)

MATHEMATICS

Paper No.: Math-363

(Mechanics)

(PART : A—OBJECTIVE)

(Marks: 25)

Answer all questions

SECTION-A

(Marks: 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided:

1.	Forces 3, 2, 4, 5	kg	(fo	rce) act r	espec	tively along	the	sides
	\overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA}	of	а	square.	The	magnitude	of	their
	resultant is					en en e		

(a)	√8	kg	(force)	
(u)	VO	r.R	(10100)	<u> </u>

(b)
$$\sqrt{3}$$
 kg (force)

(c)
$$\sqrt{10}$$
 kg (force)

(d)
$$\sqrt{12}$$
 kg (force)

/563

2. If a body on a rough surface is in limiting equilibrium, then

- (a) $\mu > \tan \alpha$
- (b) $\mu = \tan \alpha$
- (c) $\mu < \tan \alpha$
- (d) $\mu \leq \tan \alpha$

3. The centre of gravity of a rod of mass m and its length a is at

- (a) 2a
- (b) $\frac{3}{4}a$
- (c) $\frac{1}{3}a$
- (d) $\frac{1}{2}a$

4. The moment of inertia of a uniform solid sphere of radius a, mass m about a diameter is

- (a) $\frac{1}{5}$ ma²
- (b) $\frac{2}{3}ma^2$
- (c) $\frac{2}{5}ma^2$
- (d) $\frac{1}{24}ma^2$

VI/MAT (xi)/563

5.	The prop	frequenc ortionalit	y of a partic y constant is	cle executing	SHM wit	h μ as
	(a)	$2\pi/\sqrt{\mu}$				
	(b)	$\pi/\sqrt{\mu}$				
	(c)	$\mu/2\pi$				
	(d)	$\sqrt{\mu}/2\pi$				
			1			
6.	tne	particle m normal re is	oves in a circ component	cle of radius b of acceleration	with s = L on toward	θ, then ds the
	(a)	$b\dot{\theta}^2$				
	(b)	bė́				
	(c)	$b^2\dot{\theta}^2$				
	(d)	$b^2\dot{\theta}$				
7.	The proje	maximus	m range of n the ground	projectile wi	th a velo	ocity u
	(a)	2 u / g		V as		
	(b)	$2u^2/g$				

(c) u^2 / g (d) $4u^2 / g$

VI/MAT (xi)/563

8.	The terminal velocity of a particle fall with $\ddot{x} = g - 4k\dot{x}$ as the equation of	lling und motion	ler a is	medium

(a)
$$g/k$$

(b)
$$g^2/k^2$$

(c)
$$2g/k$$

(d)
$$g/4k$$

9. If e be the coefficient of restitution of collision of two inelastic bodies, then

(a)
$$e=1$$

(b)
$$e=0$$

(c)
$$e=\frac{1}{2}$$

(d)
$$e = -1$$

10. A smooth sphere of mass m strikes a plane normally and is rebounded. If e be the coefficient of restitution, then the loss of its kinetic energy is

(a)
$$\frac{1}{2} me^2 u^2$$

(b)
$$\frac{1}{2}m(1+e^2)u^2$$

(c)
$$\frac{1}{2}m(1-e^2)u^2$$

(d)
$$\frac{1}{2}mu^2$$

VI/MAT (xi)/563

SECTION-B

(Marks: 15)

Each question carries 3 marks

Write on the following in brief:

1. A uniform ladder rests in equilibrium with its lower end on a rough horizontal plane and its upper end against a smooth vertical wall. If θ be the inclination of the ladder to the vertical, then prove that $\tan \theta = 2\mu$, where μ is the coefficient of friction.

 Find the centre of mass G of a circular arc of radius q subtending an angle 2a radian at the centre. 3. If the coordinates of a moving point at time t are given by $x = a(2t + \sin 2t)$, $y = a(1 - \cos 2t)$, then show that the acceleration of the point is constant.

4. When a particle falls downward in a resisting medium with resistance varies as the square of the velocity, then prove that the terminal velocity is $\sqrt{g/k}$.

S. When a particle moves under the action of a conservative system of forces, then prove that the sum of its kinetic and potential energies is constant throughout the motion.

...