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Answer one question from each Unit

UNIT—I

1. (a) State and prove Darboux’s theorem. 1+4=5

(b) If f  is bounded and integrable function

on [ , ]a b , then prove that | |f  is also

integrable on [ , ]a b  and

f dx f dx
a

b

a

b

ò ò£ | |
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2. (a) If a bounded function f  is integrable on 

[ , ]a c  and [ , ]c b , where c is a point of [ , ]a b ,

then prove that f  is also integrable 

on [ , ]a b . 5

(b) Show that the function f x x( ) = +3 1 is

Riemann integrable on [ , ]1 2  and hence

show that

( )3 1
11

21

2
x dx+ =ò 4+1=5

UNIT—II

3. (a) Prove that the improper integral

f dx
a

b

ò

converges at a if and only if to every e > 0

there corresponds d > 0 such that

    f dx
a

a

+

+

ò <
l

l
e

1

2 , 0 1 2< <l l d,
5

(b) Examine the convergence of the

following functions : 2½+2½=5

(i)
1

10

1 +

-ò
x

x
dx

(ii)
x x

x
dx

tan

( ) /
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+
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4. (a) Show that the integral

x e dxn x- -¥

ò
1

0

is convergent if and only if n > 0. 5

(b) Prove that every absolutely convergent

integral is convergent. 5

UNIT—III

5. (a) If | |a £ 1, then show that

         log ( cos ) log1
1

2

1

2
1 2

0
+ = + -æ

è
ç

ö
ø
÷ò a x dx ap

p

5

(b) Let f x y( , ) be a continuous function of

two variables with rectangle 

[ , ; , ]a b c d Í r2 . Then prove that the

function defeined by

f( ) ( , )y f x y dx
a

b
= ò

is continuous in [ , ]c d . 5

6. (a) Let f  be a real valued continuous

function of two variables on the closed

rectangle [ , ; , ]a b c d . Prove that

         a f x y dx dy a f x y dy dx
a

b

c

d

a

b

c

d
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(b) Examine the uniform convergence of the 

convergent improper integral

e yx dxx-¥

ò
2

0
cos  in ( , )- ¥ ¥

5
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UNIT—IV

7. (a) Show that

ydx x dy

x yC

-

+
= -ò 2 2

2p

round the circle C x y: 2 2 1+ = . 5

(b) Show that

        
x y

x y
dy dx

x y

x y
dx dy

-

+

ì
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ü
ý
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1

30

1

0

1

0

1
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8. (a) Change the order of integration in the

double integral

f x y dy dx
ax x

axa
( , )

2

2

0

2

2-
òò 5

(b) With the help of Green’s theorem,

compute the difference between  the line 

integrals

I x y dx x y dy
ACB1

2 2= + - -ò ( ) ( )

and I x y dx x y dy
ADB2

2 2= + - -ò ( ) ( )

where ACB and ADB are respectively

the straight line and the parabolic arc 

y x= 2  joining the points A ( , )0 0  and 

B ( , )1 1. 5
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UNIT—V

9. (a) If a sequence { }fn  converges uniformly

to f  on x a bÎ [ , ] and let fn  be integrable 

"n, then prove that f  is integrable and

f x dx f x dx
n

na

x

a

x
( ) lim ( )=

® ¥
òò 6

(b) Show that the sequence of function

f x
nx

e
n

nx
( ) =

2

is pointwise, but not uniformly

convergent on [ , [0 ¥ . 4

10. (a) State and prove Cauchy’s criterion of

uniform convergence of a sequence { }fn

of real valued functions on a set E . 6

(b) Examine whether the infinite series

1

13 2
1 n nxn ( )+=

¥

å

can be differentiated term by term. 4

H H H
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MATH/VI/10

2 0 1 6

( 6th Semester )

MATHEMATICS

Paper : MATH–362

( Advanced Calculus )

( PART : A—OBJECTIVE )

( Marks : 25 )

Answer all questions

SECTION—I

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct alternative in the box

provided :

1. The lower Riemann integral for a function f

corresponding to the partition P  of interval [ , ]a b  is given

by the relation

(a) sup ( , )L P f f dx
a

b
= ò    £

(b) L P f f dx
a

b
( , ) sup= ò    £

(c) L P f f dx
a

b
( , ) inf= ò    £

(d) sup ( , )U P f f dx
a

b
= ò    £
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2. If P  and P * are  two partitions of [ , ]a b  such that P * is

finer than P , then for a bounded function f

(a) L P f L P f( , ) ( , )* £    £

(b) U P f U P f( , ) ( , )* ³    £

(c) L P f L P f( , ) ( , )* ³    £

(d) U P f U P f( , ) ( , )* £    £

3. If f  and g be two positive functions on [ , ]a b  such that

lim
( )

( )x a

f x

g x
l

® +
=

a non-zero finite number, then

(a) g dx
a

b

ò  converges if f dx
a

b

ò  converges   £

(b) f dx
a

b

ò  converges if g dx
a

b

ò  converges   £

(c) f dx
a

b

ò  diverges if g dx
a

b

ò  diverges   £

(d) f dx
a

b

ò  and g dx
a

b

ò  behave alike   £

4. The improper integral 
dx

x a na

b

( )-
ò  converges if and only if

(a) n £1   £ (b) n <1   £

(c) n >1   £ (d) n ³1   £

( 2 )
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5. The value of the improper integral e x dxx-¥

ò
2

0
cosa  is

(a)
p

2
   £ (b)

p a

2
4e - /    £

(c)
p a

2

2 4e - /    £ (d)
p a

2

2 4e - /    £

6. The uniformly convergent improper integral of a

continuous function

(a) is not continuous   £

(b) is itself continuous   £

(c) may be continuous   £

(d) None of the above   £

7. The value of the integral xy dx
Cò  along the arc of the

parabola x y= 2 from ( , )1 1-  to ( , )1 1 is

(a) 0   £

(b)
2

5
   £

(c)
4

5
   £

(d)
5

4
   £

( 3 )
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8. The value of the double integral x y dx dy2 3
òò  over the

circle x y a2 2 2+ =  is

(a) 0   £

(b) -
1

2
   £

(c)
p

2
   £

(d)
1

2
   £

9. With regards to uniform and pointwise convergence of

sequences in [ , ]a b , which of the following is true?

(a) Pointwise convergence Þ Uniform convergence  £

(b) Uniform convergence Þ Pointwise convergence  £

(c) Uniform limit = Pointwise limit   £

(d) All of the above   £

10. The sequence f x
n

x n
n ( ) =

+
 is

(a) uniformly convergent in [ , ]0 k , whatever k may be £

(b) only pointwise convergent in [ , ]0 k , whatever k

may be  £

(c) not uniformly convergent in [ , ]0 k , whatever k

may be   £

(d) uniformly convergent in [ , )0 ¥    £

( 4 )
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SECTION—II

( Marks : 15 )

Each question carries 3 marks

1. For any two partitions P P1 2,  of a bounded function f,

show that L P f U P f( , ) ( , )1 2£ .

( 5 )
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2. Using Frullani’s integral, evaluate

e e

x
dx

ax bx- -¥ -
ò0

( 6 )
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3. State Weierstrass’ M-test for the uniform convergence of a 

convergent improper integral.

( 7 )

MATH/VI/10/341

www.gzrsc.edu.in



4. Evaluate ( )x y dx
C

2 2+ò , where C is the arc of the parabola 

y ax2 4=  between ( , )0 0  and ( , )a a2 .

( 8 )
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5. Show that f x
nx

n x
n ( ) =

+1 2 2
 is not uniformly convergent in

any interval containing zero.

H H H
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