a box bobound ov 2015 box if it (d)

1 2 1

18th avord & (6th Semester) Sargaini

MATHEMATICS

Paper: Math-362

2. (a) If a bounded function / is integrable on

no bid organi (Advanced Calculus) , [d [b]

a cland to blowlers Full Marks: 75

8

Time: 3 hours $\frac{1}{x} = (x)$

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

3. (a) Prove that the TINU or in estal

1. (a) State Darboux's theorem and apply it to show that if f is bounded and integrable on [a, b], then to every $\varepsilon > 0$, $\exists \delta > 0$ such that for every partition

 $a = x_0 < x_1 < ... < x_{i-1} < x_i < ... < x_n = b$ of norm $\leq \delta$ and for every choice of $t_i \in [x_{i-1}, x_i]$

$$\left| \sum_{i=0}^{n} f(t_i)(x_i - x_{i-1}) - \int_a^b f(x) \, dx \right| < \varepsilon$$
1+4=5

(b) If f_1 and f_2 are two bounded and integrable functions on [a, b], prove that $f = f_1 + f_2$ is also integrable on [a, b] and

$$\int_{a}^{b} f \, dx = \int_{a}^{b} f_{1} \, dx + \int_{a}^{b} f_{2} \, dx$$

- 2. (a) If a bounded function f is integrable on [a, b], prove that f is also integrable on [a, c] and [c, b], where $c \in [a, b]$.
 - (b) Show that the function f defined by $f(x) = \frac{1}{2^n}$ when

$$\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}$$
, $(n = 0, 1, 2, 3, ...)$

$$f(0) = 0$$
 is integrable and $\int_0^1 f dx = \frac{2}{3}$.

UNIT-II

3. (a) Prove that the improper integral

$$\int_a^b \frac{dx}{(x-a)^n}$$

converges if and only if n < 1.

(b) Examine the convergence of the following functions: $2\frac{1}{2}+2\frac{1}{2}=5$

(i)
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

(ii)
$$\int_0^\infty x^3 e^{-x^2} dx$$

www.gzrsc.edu.in

5

5

- 4. (a) Show that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ exists if and only if m, n are both positive.
 - (b) If ϕ is continuous in $[0, \infty)$ and

$$\lim_{x\to 0} \phi(x) = \phi_0, \quad \lim_{x\to \infty} \phi(x) = \phi_1$$

then show that

$$\int_0^\infty \frac{\phi(ax) - \phi(bx)}{x} dx = (\phi_1 - \phi_0) \log\left(\frac{b}{a}\right)$$

UNIT-III

5. (a) If |a| < 1, show that

$$\int_0^{\pi} \frac{\log (1 + a \cos x)}{\cos x} dx = \pi \sin^{-1} a$$

(b) Let $\phi(y) = \int_a^b f(x, y) dx$, if f(x, y) is continuous and f_y also exists in [a, b; c, d], then ϕ is derivable and

$$\phi'(y) = \int_a^b f_y(x, y) dx \ \forall \ y \in [c, d]$$

6. (a) If
$$f(x, y) = \frac{y^2}{x^2 + y^2}$$
 and $g(y) = \int_0^1 f(x, y) dx$, show that the right-hand and left-hand

derivatives, $g'(0^+)$ and $g'(0^-)$ of g at y=0 differ from each other.

www.gzrsc.edu.in

(b) Examine the uniform convergence of the convergent improper integral

$$\int_{-1}^{1} \frac{\cos yx}{\sqrt{1-x^2}} dx \quad \text{in } (-\infty, \infty)$$

UNIT-IV

7. (a) Show that

$$\int_C [(x-y)^3 dx + (x-y)^3 dy] = 3\pi a^4$$

taken along the circle $x^2 + y^2 = a^2$ in the counter clockwise direction.

(b) Evaluate $\iint x^2 y^2 dx dy$ over the region $x^2 + y^2 \le 1^2$.

8. (a) Change the order of integration in the integral

$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} \frac{e^y \, dy}{(1+e^y)\sqrt{1-x^2-y^2}}$$

and hence evaluate it.

(b) State Green's theorem for double and line integrals. Verify Green's theorem for

$$\int_{C} \{(3x^2 - 8y^2) dx + (4y - 6xy) dy\}$$

where C is the boundary of the region defined by $y = \sqrt{x}$ and $y = x^2$.

www.gzrsc.edu.in

5

5

UNIT-V

- 9. (a) State and prove Cauchy's criterion of uniform convergence of a sequence $\{f_n\}$ of real-valued functions on a set E.
 - 6
 - (b) Show that the sequence of function

$$f_n(x) = \frac{nx}{e^{nx^2}}$$

point-wise, but not uniformly is convergent on $[0, \infty[$.

10. Give an example of a sequence of real-valued integrable function which is not uniformly convergent but can be integrated term by term. Justify your answer.

2015

responsible for the first to Armedia

(6th Semester)

MATHEMATICS

Paper: Math-362

(Advanced Calculus)

(PART : A-OBJECTIVE)

(Marks: 25)

Answer all questions

SECTION-A

(Marks: 10)

Each question carries 1 mark

Put a Tick

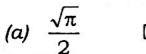
mark against the correct alternative in the box provided:

1. The upper Darbaux sums of a function f corresponding to the partition P of interval [a, b] is given by the relation

(a)
$$L(P, f) = \sum_{i=2}^{n} m_i \Delta x_i$$

(b)
$$L(P, f) = \sum_{i=2}^{n} M_i \Delta x_i$$

(c)
$$U(P, f) = \sum_{i=2}^{n} m_i \Delta x_i$$


(d)
$$U(P, f) = \sum_{i=2}^{n} M_i \Delta x_i$$

2. Let P^* be a refinement of a partition P , then for a bounded function f
(automorphism of all extremely and all extremely all extre
(a) $L(P^*, f) \leq L(P, f)$
(b) $L(P^*, f) \ge L(P, f)$
(c) $U(P^*, f) \ge L(P, f)$
(d) None of the above
182:4/4:44)
3. If f and g be two positive functions such that $f(x) \le g(x) \ \forall \in [a, b]$, then
(a) $\int_a^b g dx$ converges if $\int_a^b f dx$ converges \Box
(b) $\int_a^b f dx$ converges if $\int_a^b g dx$ converges \Box
(c) $\int_a^b f dx$ diverges if $\int_a^b g dx$ diverges \Box
(d) Both (b) and (c) are true
4. The improper integral $\int_a^\infty \frac{dx}{x^n}$, $a > 0$ converges if and only
if
(a) $n \le 1$ \square (b) $n < 1$ \square
(c) $n>1$ \square (d) $n\geq 1$ \square

www.gzrsc.edu.in

VI/MAT (x)/345

5. The value of the integral $\int_0^\infty e^{-x^2} dx$ is

(b) $\sqrt{\frac{\pi}{2}}$

(d) $\frac{\pi}{2}$

6. Uniformly convergent improper integral of a continuous function is

not continuous

itself continuous (b)

may be continuous

10. With master to unified and

(d) None of the above

5 71,59 3 111

r to goriwid, of russumme

7. The value of the integral $\int_C x^2 dx + xy dy$ taken along the line segment from (1, 0) to (0, 1) is

(a) 0

(a) Fame of the contractor as the

(c) $-\frac{1}{6}$

(d) $\frac{1}{6}$

	B. Th	we value of the double integral $\int_{1/2}^{1} \int_{1/2}^{1} \frac{x-y}{x+y} dx dy$ is
	(a)	0 \Box (b) $-\frac{1}{2}$ \Box
	(c)	$\frac{\pi}{2}$ \Box (d) $\frac{1}{2}$ \Box
9	. By	M_n -test, the sequence $\{f_n\}$ converges uniformly to f $[a, b]$ if and only if
	(a)	$M_n \to 0 \text{ as } n \to 0$
	(b)	$M_n \to \infty \text{ as } n \to 0$
	(c)	$M_n = \inf \{ f_n(x) - f(x) : x \in [a, b] \}$
	(d)	$M_n \to 0$ as $n \to \infty$
0.		th regard to uniform and point-wise convergence of uences in [a, b] which of the following is true?
	(a)	Point-wise convergence ⇒ Uniform convergence □
	(b)	Uniform convergence ⇒ Point-wise convergence □
	(c)	Uniform limit = Point-wise limit
	(d)	None of the above

VI/MAT (x)/345

SECTION-B

(Marks: 15)

Each question carries 3 marks

1. Show that

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$$

is not integrable on any interval.

2. Examine the convergence of

$$\int_{0}^{\infty} \frac{x \tan^{-1} x}{(1-x^4)^{1/3}} dx$$

3. Evaluate $\int_0^a \frac{dx}{a + b \cos x}$ if a is positive and |b| < a and deduce that

$$\int_0^{\pi} \frac{dx}{(a+b\cos x)^2} = \frac{\pi a}{(a^2-b^2)^{3/2}}$$

4. Evaluate $\int_C \frac{y \, dx - x \, dy}{x^2 \cdot y^2}$ round the circle $C \cdot x^2 \cdot y^2 = 1$.

8. What do you mean by the point-wise convergence and the uniform convergence of a sequence of real-valued functions?

...