2015

(2nd Semester)

MATHEMATICS

SECOND PAPER

(Algebra)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- If A and B are invertible matrices of the 1. (a) same order, then show that AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
 - Find two non-singular matrices P and Q (b) such that PAQ is in normal form, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$

Also find the rank of the matrix A.

6

5-1-1-1

2. (a) Solve the system of equations:

5

$$x+y+z=6$$
$$x+2y+3z=14$$

$$x-y+z=2$$

(b) Using elementary operation, find the inverse of the matrix

$$\begin{bmatrix}
1 & 0 & 2 \\
2 & 3 & 0 \\
0 & 3 & 4
\end{bmatrix}$$

5

UNIT-II

3. (a) Prove that the inverse of the product of any two elements of a group G is the product of the inverses taken in the reverse order.

3

- (b) Define binary operation on a non-empty set A. Verify whether a mathematical system (\mathbb{Z} , -), where '-' is the usual subtraction on \mathbb{Z} is—
 - (i) commutative;
 - (ii) associative.

1+1+1=3

(c) Show that every finite group of order less than six must be Abelian.

4.	(a)	Prove that every subgroup of a cyclic group is cyclic.	5
	(b)	If a and b are any two elements of a group G, then prove that	
		$Ha = Hb \Leftrightarrow ab^{-1} \in H$ where Ha is the right coset of H in G generated by a .	5
		Unit—III	
5.	(a)	State and prove Euler's extension of Fermat's theorem and apply it to show that the remainder on dividing 7 ⁹ by 15 is 7.	6
	(b)	If f is a homomorphism of a group G into another group \overline{G} , prove that $\ker f = \{e\}$ if and only if f is one to one.	4
6.	(a)	Prove that the order of every element of a finite group is a divisor of the order of the group.	5
	(b)	If R is the additive group of real numbers and R_+ the multiplicative group of positive real numbers, prove that the mapping $f: R \to R_+$ defined by $f(x) = e^x$ for all $x \in R$ is an isomorphism	
		Jest to all Le K is all isomorphism	

5

of R onto R_+ .

UNIT—IV

- 7. (a) Prove that $x^2 + x + 1$ is a factor of $x^{10} + x^5 + 1$.
 - (b) If a polynomial f(x) is divided by a binomial (x-a), prove that the remainder is f(a).
 - (c) Find the remainder when $4x^5 + 3x^3 + 6x^2 + 5$ is divided by (2x+1).
- 8. (a) Find the value of α in order that the expression

$$4x^4 - (\alpha - 1)x^3 + \alpha x^2 - 6x + 1$$

may be divisible by $(2x - 1)$.

(b) If a polynomial f(x) is divided by (x-a)(x-b), $a \neq b$

then prove that the remainder is

$$\frac{(x-b)f(a)-(x-a)f(b)}{a-b}$$

UNIT-V

9. (a) Solve by Cardan's method

$$x^3 - 18x - 35 = 0$$

(b) If α , β , γ , δ be the roots of the biquadratic equation

$$x^4 + px^3 + qx^2 + rx + s = 0$$

prove that

$$(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1)(\delta^2 + 1) = (1 - q - s)^2 + (p - r)^2$$

10. (a) If α , β and γ are the roots of the equation

$$x^3 + px^2 + qx + r = 0,$$

form the equation whose roots are

$$\beta^{2} + \gamma^{2} - \alpha^{2}$$
, $\gamma^{2} + \alpha^{2} - \beta^{2}$, $\alpha^{2} + \beta^{2} - \gamma^{2}$ 5

(b) The equation $ax^3 + 3bx^2 + 3cx + d = 0$ has two equal roots, prove that

$$(bc-ad)^2 = 4(b^2-ac)(c^2-bd)$$
 5

 $\star\star\star$

16. 3

BOWN BOND

2015

(2nd Semester)

MATHEMATICS

SECOND PAPER

(Algebra)

(PART : A-OBJECTIVE)

(Marks: 25)

Answer all questions

SECTION—A

(Marks: 10)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the box provided:

1.	If	A	is	an	orthogonal	matrix,	then	$A^t A$	is	equal	to

- (a) A^{-1}
- (b) $|A|^n$
- (c) I_n
- (d) None of the above \Box

/234

BOTTOLLLETTAN

(Ale siA)

					€.	1 12	1	2	3	
2.	The	rank	of	the	matrix	A =	3	4	5	is
							4	5	6	

(a) 2 \Box

ein Int. \ II

- (b) 1 \Box
- (c) 0 🗆
- (d) 3

3. The identity element in a group (\mathbb{Z}, \times) , where \mathbb{Z} is a set of integers and \times is an ordinary multiplication, is

- (a) 0 \Box
- (b) 1 \Box
- (c) −1 □
- (d) None of the above \Box

4. The number of binary compositions on a finite set A having n elements is

- (a) n^{n^2}
- (b) 2^{n^2}
- (c) n^n
- (d) n!

my was of the obese

nozative and the could earl of a base first term is take

5.	Α	homomorphism	of	а	group	into	itself	is	called
----	---	--------------	----	---	-------	------	--------	----	--------

(a) an automorphism

(b) an endomorphism \square

(c) an isomorophism \Box

(d) None of the above

6. The number of generators of a cyclic group of order 8 is

men I de la monu

(a) 2

(b) 7 \Box

(c) 8 \Box

(d) 4 🗆

7. The polynomial $x^4 - 3x^3 + 2x^2 + 2x - 4$ is divisible by

ALL TEST OF THE THE THE TANK OF

and None of the above

(a) x-1

(b) x-2

(c) x+1

(d) x+2

Q	Fve	ry equation of an even degree whose last term is
0.		at least two roots,
	(a)	one positive and one negative
		both negative
	(c)	both positive
	(d)	None of the above
	100	
9.	If α	, β and γ are the roots of the cubic equation
	· 2	$ax^3 + bx^2 + cx + d = 0$
	the	Δ Δ Δ equals
	(a)	$\frac{d}{a}$
	(b)	$\frac{c}{a}$
	(c)	$-\frac{b}{a}$
	(d)	None of the above
	d al	
lO.	The	equation $x^4 + 2x^2 + 3x - 1 = 0$ has
	(a)	two negative roots and two complex roots
	(b)	two positive roots and two complex roots
	(c)	one positive, one negative and two complex roots \square
	(d)	None of the above

SECTION-	R
ODC HON	L

(Marks: 15)

Each question carries 3 marks

State True or False of the following with a brief justification:

1.	If A be a	skew-Hermitian	matrix,	then	iA is	Hermitian
	where $i = $	$\sqrt{-1}$.	•			

True	False	

Justification:

2.	The union subgroup	of two	subgroups	of	a group	is always	a
	•		1	True	0	Faise	O
	Austrification						

3.	If $f: G \to G'$ is a the homomorphic image of G' .	homomorphism of G in G' , then f	and f(G) is
	Justification :	True 🗆	False O

4.	The	equation	x fo	•	**	*	*2	•	x	*	3	*	0	has	no	complex	root.
										,	Г'n	ue	,	O		False	O
	Auna	ification:															

5.								four	unequal	roots,	then	k
	must	he	betv	een	8	and	11.					
								_	6294			print.

Austrification

...