2016

(CBCS)

MATHEMATICS

FIRST PAPER

(Calculus)

Full Marks: 75

Time: 3 hours

(PART: B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

Unit—I

1. (a) Draw the graph of the function defined by

$$f(x) \quad \frac{|x|}{[x]}, \quad 0 \quad x$$

where [x] is the greatest integer function. Is the function f(x) derivable for all x (0,)?

(b) Use L'Hospital rule to evaluate

$$\lim_{x \to 0} \frac{e^x \sin x}{\log(1 - x)}$$
 3

- **2.** (a) Use definition of continuity to prove that f(x) = 2x + 5 is continuous at x = 2.
 - (b) If $y = a\cos(\log x) = b\sin(\log x)$, then show that

$$x^{2}y_{n-2}$$
 (2n 1) xy_{n-1} (n² 1) y_{n} 0 6

UNIT—II

- **3.** (a) State and prove Rolle's theorem. 1+5=6
 - (b) Expand $\sin x$ in an infinite series in powers of x.
- **4.** (a) Use Taylor's theorem to express the polynomial $2x^3$ $7x^2$ x 6 in powers of $(x \ 2)$.
 - (b) State and prove Lagrange's mean value theorem. 1+4=5

G7/232a

(Turn Over)

7

G7**/232a**

(Continued)

UNIT—III

5. (a) Evaluate :

$$\frac{x}{(x-1)(x-2)^2} dx$$

- (b) Use the definition of the definite integral as a limit of sum to evaluate $\int_{1}^{3} \frac{1}{x} dx$. 5
- **6.** (a) Obtain reduction formula for

$$\sin^n x \cos^m x \, dx \tag{6}$$

(b) If

$$I_n = \int_0^{/2} \sin^n x \, dx$$

show that

$$I_n = \frac{n-1}{n} I_{n-2}$$

UNIT—IV

7. (a) Let $f: \square^2 \square$ be defined by

$$f(x, y) = \frac{xy}{x^2 y^2}, \quad (x, y) = (0, 0)$$

$$0, \quad (x, y) = (0, 0)$$

Test the continuity of f at the origin. 5

(b) State and prove Euler's theorem on homogeneous functions. 5

8. (a) If

$$u \quad x \quad \frac{y}{x} \qquad \frac{y}{x}$$

show that

$$x^{2} - \frac{2u}{x^{2}} = 2xy - \frac{2u}{xy} + y^{2} - \frac{2u}{y^{2}} = 0$$
 5

(b) Find the area enclosed by the circle x^2 y^2 a^2 .

9. (a) Show that the sequence $\{f_n\}$ defined by

$$f_n$$
 1 $\frac{1}{2}$ $\frac{1}{3}$ \cdots $\frac{1}{n}$

cannot converge.

- (b) Prove that if a sequence is convergent, then it converges to a unique limit. 5
- 10. (a) Test the convergence of the series

$$1 \frac{x}{2} \frac{x^2}{5} \frac{x^3}{10} \cdots \frac{x^n}{(n^2 \ 1)} \cdots 5$$

(b) Prove that every convergent sequence is bounded and hence show that

$$\frac{3n}{n} \frac{1}{1}$$

is bounded above.

3+2=5

5

5

 $\star\star\star$

5

Subject Code: MATH/I/EC/01 (CBCS)	Booklet No. A
To be filled in by the Candidate	Date Stamp
CBCS DEGREE 1st Semester (Arts / Science / Commerce /) Exam., 2016	
SubjectPaper	To be filled in by the Candidate
INSTRUCTIONS TO CANDIDATES	<u>CBCS</u> DEGREE 1st Semester
 The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa. 	(Arts / Science / Commerce /) Exam., 2016 Roll No.
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.	Regn. No
3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one	Subject Paper
answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question	Descriptive Type Booklet No. B
only. Signature of Signature of Examiner(s)	Signature of Invigilator(s)

www.gzrsc.edu.in

/232

MATH/I/EC/01 (CBCS)

2016

(CBCS)

MATHEMATICS

FIRST PAPER

(Calculus)

(PART : A—OBJECTIVE)

(Marks: 25)

Answer all questions

SECTION—A

(*Marks*: 10)

Each question carries 1 mark

Put a Tick $\ensuremath{\square}$ mark against the correct answer in the box provided :

1. The value of

$$\lim_{x \to 0} \frac{2x}{\sin x}$$

is

- (a) -1
- *(b)* 0 □
- (c) 1 \Box
- (d) 2

/232

2.	The	derivat	tive o	of $\sin x$ with re	spect to co	os x is	
	(a)	tan x					
	(b)	cot x					
	(c)	tan <i>x</i>	[
	(d)	cot x]			
3.				ue of c (1, 5) he function $f(x)$			
	(a)	1					
	(b)	2					
	(c)	3					
	(d)	4					
4.	func		(x)	mean value th e^x , $g(x) = e^x$,			
	(a)	$\frac{m}{2}$					
	(b)	\sqrt{mn}]			
	(c)	m n					
	(d)	None o	of the	e above \square			
MATI	H/I/E	C/01 (CI	BCS)	232			

1	2	١
•	J	•

= 751 1	
5. The value	OT

$$\frac{2}{2}|x|\,dx$$

is

(a) 0
$$\Box$$

(b)
$$\frac{1}{2}$$

6. The value of $e^x[\sin x \cos x] dx$ is

(a)
$$e^x \cos x$$

(b)
$$e^x \sin x$$

(c)
$$e^x \sin x \cos x$$

(d) None of the above
$$\Box$$

7. Let

$$f(x, y) \quad \frac{3x}{2x} \quad \frac{y}{5y}$$

Then $\lim f(x, y)$ as (x, y) (1, 3) along the line x 1 0 is

- (a) $\frac{3}{2}$
- (b) 0 □
- (c) $\frac{1}{5}$
- (d) Does not exist \Box

8. The value of the double integral dydx where

$$E (x, y) R^2 : x^2 y^2 \frac{1}{4}$$

is

- (a)
- (b) $\frac{}{2}$
- (c) $\frac{}{4}$
- (d) None of the above \Box

9.	Wh	ich one of the following is True regarding sequence?
	(a)	A bounded sequence is always convergent \Box
	(b)	If two sequences $\{a_n\}$ and $\{b_n\}$ are both divergent, then $\{a_n \ b_n\}$ is also divergent \square
	(c)	A convergent sequence is bounded \Box
	(d)	A monotonic sequence is always convergent \Box
10.	The	e series $\frac{n!}{n-1} \frac{n!}{n^n}$
	(a)	is divergent \square
	(b)	is convergent \Box
	(c)	oscillates finitely \Box
	(d)	oscillates infinitely \Box
MATI	H/I/I	EC/01 (CBCS) /232

(6)

SECTION—B

(Marks: 15)

Each question carries 3 marks

1. (a) Using definition of the limit, prove that $\lim_{x \to 2} x^2$ 4.

Or

(b) If the function

$$\frac{\sin 4x}{5x} \quad a \quad \text{for} \quad x \quad 0$$

$$f(x) \qquad x \quad 4 \quad b \quad \text{for} \quad x \quad 0$$

$$1 \qquad \qquad \text{for} \quad x \quad 0$$

is continuous at x = 0, then find the values of a and b.

(7)

2. (a) Verify Lagrange's mean value theorem for the function $f(x) = 2x^2 + 10x + 29$ in [2, 7].

Or

(b) Discuss the applicability of Rolle's theorem for the function

$$f(x) \quad \log \frac{x^2 - 12}{x}$$

in [3, 4].

(9)

3. (a) Integrate:

$$e^x \frac{x}{(x-1)^3} dx$$

Or

(b) Evaluate:

$$0^{\frac{1}{2}} \frac{dx}{1 - \sqrt{\cot x}}$$

4. (a) Show that for the function

$$f(x, y) = \frac{xy}{x^2 + y^2}$$

the repeated limits

$$\lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} \text{ and } \lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2}$$

exist and are equal. But the double limit

$$\lim_{(x, y) (0, 0)} \frac{xy}{x^2 y^2}$$

does not exist.

Or

(b) If

$$u \sin^{-1} \frac{x^2 + y^2}{x + y}$$

show that

$$x - \frac{u}{x}$$
 $y - \frac{u}{y}$ $\tan u$

(11)

5. (a) Show that the sequence $\{b_n\}$, where

$$b_n = \frac{1}{(n-1)^2} = \frac{1}{(n-2)^2} = \cdots = \frac{1}{(n-n)^2} = \frac{n}{k-1} \frac{1}{(n-k)^2}$$
 converges to 0.

Or

(b) Examine the convergence of the series

$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{68}$...
