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MATHEMATICS

FIRST PAPER

( Calculus—I )

Full Marks : 75

Time : 3 hours

( PART : B—DESCRIPTIVE )

( Marks : 50 )

The figures in the margin indicate full marks
for the questions

Answer five questions, selecting one from each Unit

UNIT—I

1. (a) Draw the graph of the function defined

by

f x

x x

x x
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Discuss whether ¢f x( ) exists at x = 2. 5
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(b) Use e-d definition of continuity to prove

that y x= sin  is continuous at every value 

of x. 5

2. (a) If y e x=
-tan 1

, then prove that

  ( ) ( ) ( )1 2 1 1 02
1 1+ + - + - =+ -x y nx y n n yn n n 5

(b) Evaluate : 3

lim
sin

sin

x

x xe e

x x®

-

-0

(c) Prove that f x x( ) | |=  is not differentiable

at x = 0. 2

UNIT—II

3. (a) State and prove mean-value theorem and 

give its geometrical interpretation. 5

(b) Find the tangent to the curve

xy x2 4 4= -( )

at the point where it is cut by the line 

y x= . 5

4. (a) Expand log ( )1 + x  in an infinite series in

powers of x. 5

(b) Find the value of q in the Lagrange’s form 

of remainder Rn  for the expansion 
1

1 - x

in powers of x. 5
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UNIT—III

5. (a) Prove that

cos
/ n x dx

n

n

n

n
=
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if n is even. 5

(b) From the definition of integration as the

limit of sum, evaluate

e dxx

2

5

ò 5

6. (a) Evaluate any two of the following : 2½×2=5

(i)
sin

sin cos

x

x x
dx

+ò

(ii)
( )2 5

3 12

x

x x
dx

+

+ +
ò

(iii)
x

x x
dx

-

- -ò
1

2 3( ) ( )

(b) Prove that

   lim log
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UNIT—IV

7. (a) Let f :r r2 ®  be a function defined by

f x y
x y

x y

x y

x y( , )
; ( , ) ( , )

; ( , ) ( , )
=

¹
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if

if

Test the continuity of f  at ( , )0 0 . 5

(b) If

 u
x y

x y
=

+

-

-tan 1
3 3

then show that

x
u

x
y

u

y
u

¶

¶

¶

¶
+ = sin 2

5

8. (a) Show that 

   dx
x y

x y
dy dy

x y

x y
dx

-

+
¹

-

+
òòòò

( ) ( )3 30

1

0

1

0

1

0

1

5

(b) Find the area of the portion of the circle 

x y2 2 1+ = , which lies inside the

parabola y x2 1= - . 5
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UNIT—V

9. (a) Prove that a necessary and sufficient

condition for the convergence of a

sequence { }Sn  is that, for each e > 0 there 

exists a positive integer m such that

S Sn p n+ - < e

for every n m³  and p ³ 1. 5

(b) Show that the sequence { }Sn , where

S
n

n = + + +
1

1

1

2

1

! ! !
L

is convergent. 3

(c) Prove that the sequence { }Sn n În, where

S
n

n
n =

-

+

3 1

2

is bounded. 2

10. (a) If SUn  is a positive term series such that

lim
n

n

n

U

U
l

® ¥

+
=

1

then show that—

(i) the series converges if l < 1;

(ii) the series diverges if l > 1;

(iii) the test fails if l = 1. 5

8G/86a ( Turn Over )

( 6 )

(b) Prove that the positive term geometric

series 1 2+ + +r r L converges for r < 1

and diverges to + ¥ for r ³ 1. 3

(c) Test the convergence of the series

{( ) }/n n
n

3 1 3

1

1+ -
=

¥

å
2

H H H
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MATH/I/01

2 0 1 7

( 1st Semester )

MATHEMATICS

FIRST PAPER

( Calculus—I )

( PART : A—OBJECTIVE )

( Marks : 25 )

SECTION—I

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct answer in the box
provided :

1. The limit lim
x

x

x®

-

0

32 1
 is equal to

(a) 2 3loge    £

(b) 3 2loge    £

(c)
1

3
2loge    £

(d)
1

2
3loge    £
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2. If y Ae Bex x= + -2 2 , then 
d y

dx

2

2
 is

(a) y   £

(b) x y+    £

(c) 4y   £

(d) None of the above   £

3. The function f x x( ) log ( )= + 1 can be expanded in power of 
x by using

(a) Rolle’s theorem   £

(b) Leibnitz’s theorem   £

(c) Taylor’s theorem   £

(d) Maclaurin’s theorem   £

4. Using mean-value theorem, the point to the curve g x= 2,

where the tangent is parallel to the line joining the points 
( , )1 1 and ( , )2 4  is

(a) 1
9

4
,

æ
è
ç

ö
ø
÷   £

(b)
3

4

9

4
,

æ
è
ç

ö
ø
÷   £

(c)
3

2

9

4
,

æ
è
ç

ö
ø
÷   £

(d) None of the above   £

( 2 )
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5. If f  is an even function and f x dx( ) =ò 4
0

1
, then the value

of f x dx( )
-ò 1

1
 is

(a) 4   £

(b) -4   £

(c) 8   £

(d) -8   £

6. If f x x( ) [ ]= + 1 (the greatest integer function), then the

value of f x dx( )
-ò 1

1
 is equal to

(a) 0   £

(b) 1   £

(c) 2   £

(d) -1   £

7. The limit lim
( , ) ( , )x y

xy

x y® +0 0 2 2

2
 is equal to

(a) 2   £

(b) 0   £

(c) 1   £

(d) Does not exist   £

( 3 )
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8. The value of the integral xy dx
Cò  along the arc of a

parabola x y= 2 from ( , )1 1-  to ( , )1 1 is

(a)
1

5
   £

(b) 4  £

(c)
3

5
   £

(d)
4

5
    £

9. The sequence { ( ) },n nn- Î1 n

(a) oscillates finitely   £

(b) oscillates infinitely   £

(c) always has a limit 0   £

(d) None of the above   £

10. The series 
n

n
x xn

2

2

1

1
0

-

+
>å ,

(a) converges for any x ³1   £

(b) converges for any x > 0   £

(c) diverges for any x > 0    £

(d) diverges for any x ³1   £

( 4 )
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SECTION—II

( Marks : 15 )

Each question carries 3 marks

1. Test the continuity of f x( ) at x =
1

2
, where

f x
x x

x x
( )

,

,
=

-

ì
í
î

if is

if is ir l

rational

rationa1

( 5 )
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2. Find the derivative of log 5 x with respect to sin-1 2x .

( 6 )
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3. If

I x dxn
n= ò tan

/

0

4p

then prove that

I
n

In n=
-

- -
1

1
2

( 7 )
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4. If f x y( , ) be a homogeneous function of x and y of degree
n, then prove that

x
f

x
y

f

y
nf x y

¶

¶

¶

¶
+ = ( , )

( 8 )
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5. Prove that every convergent sequence is always bounded
but the converse is not true. Justify with suitable
example.

H H H
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