2017

(1st Semester)

MATHEMATICS

FIRST PAPER

(Calculus-I)

Full Marks : 75
Time : 3 hours
(PART : B—DESCRIPTIVE)
(Marks : 50)
The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit
UniT-I

1. (a) Draw the graph of the function defined by

$$
f(x)=\left\{\begin{array}{ccc}
x & , & 0 \leq x \leq 1 \\
2-x & , & 1<x \leq 2 \\
x-2 & , & 2<x \leq 3
\end{array}\right.
$$

Discuss whether $f^{\prime}(x)$ exists at $x=2$.
(b) Use $\varepsilon-\delta$ definition of continuity to prove that $y=\sin x$ is continuous at every value of x.
2. (a) If $y=e^{\tan ^{-1} x}$, then prove that
$\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$
(b) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}
$$

(c) Prove that $f(x)=|x|$ is not differentiable at $x=0$.

UNIT-II

3. (a) State and prove mean-value theorem and give its geometrical interpretation.
(b) Find the tangent to the curve

$$
x y^{2}=4(4-x)
$$

at the point where it is cut by the line $y=x$.
4. (a) Expand $\log (1+x)$ in an infinite series in powers of x.
(b) Find the value of θ in the Lagrange's form of remainder R_{n} for the expansion $\frac{1}{1-x}$ in powers of x.

(3)

UniT—III
5. (a) Prove that

$$
\int_{0}^{\pi / 2} \cos ^{n} x d x=\frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{3}{4} \frac{1}{2} \frac{\pi}{2}
$$

if n is even.
(b) From the definition of integration as the limit of sum, evaluate

$$
\begin{equation*}
\int_{2}^{5} e^{x} d x \tag{5}
\end{equation*}
$$

6. (a) Evaluate any two of the following : $2 \frac{1}{2} \times 2=5$
(i) $\int \frac{\sin x}{\sin x+\cos x} d x$
(ii) $\int \frac{(2 x+5)}{\sqrt{x^{2}+3 x+1}} d x$
(iii) $\int \frac{x-1}{(x-2)(x-3)} d x$
(b) Prove that

$$
\lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\cdots+\frac{1}{n}\right]=\frac{\pi}{4}+\frac{1}{2} \log 2
$$

UnIT—IV
7. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x, y)=\left\{\begin{array}{cll}
\frac{x^{2} y}{x^{2}+y^{2}} & ; & \text { if }(x, y) \neq(0,0) \\
0 & ; & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Test the continuity of f at $(0,0)$.
(b) If

$$
u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}
$$

then show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u
$$

8. (a) Show that

$$
\int_{0}^{1} d x \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y \neq \int_{0}^{1} d y \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x
$$

(b) Find the area of the portion of the circle $x^{2}+y^{2}=1$, which lies inside the parabola $y^{2}=1-x$.
Unit-V
9. (a) Prove that a necessary and sufficient condition for the convergence of a sequence $\left\{S_{n}\right\}$ is that, for each $\varepsilon>0$ there exists a positive integer m such that

$$
\left|S_{n+p}-S_{n}\right|<\varepsilon
$$

for every $n \geq m$ and $p \geq 1$.
(b) Show that the sequence $\left\{S_{n}\right\}$, where

$$
S_{n}=\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}
$$

is convergent.
(c) Prove that the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$, where

$$
S_{n}=\frac{3 n-1}{n+2}
$$

is bounded.
10. (a) If ΣU_{n} is a positive term series such that

$$
\lim _{n \rightarrow \infty} \frac{U_{n+1}}{U_{n}}=l
$$

then show that-
(i) the series converges if $l<1$;
(ii) the series diverges if $l>1$;
(iii) the test fails if $l=1$.
(b) Prove that the positive term geometric series $1+r+r^{2}+\cdots$ converges for $r<1$ and diverges to $+\infty$ for $r \geq 1$.
(c) Test the convergence of the series

$$
\sum_{n=1}^{\infty}\left\{\left(n^{3}+1\right)^{1 / 3}-n\right\}
$$

Subject Code : MATH/I/01

To be filled in by the Candidate

DEGREE 1st Semester
(Arts / Science / Commerce /) Exam., 2017

Subject
Paper

INSTRUCTIONS TO CANDIDATES

1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.
3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

Booklet No. A

Date Stamp
\qquad

To be filled in by the Candidate

DEGREE 1st Semester
(Arts / Science / Commerce /
) Exam., 2017
Roll No.
Regn. No.

Subject \qquad
Paper \qquad

Descriptive Type
Booklet No. B \qquad

Signature of Invigilator(s)

MATH/I/01

2017

(1st Semester)

MATHEMATICS

FIRST PAPER
(Calculus-I)
(PART : A—OBJECTIVE)
(Marks: 25)

SECTION-I

(Marks : 10)
Each question carries 1 mark
Put a Tick \downarrow mark against the correct answer in the box provided:

1. The limit $\lim _{x \rightarrow 0} \frac{2^{3 x}-1}{x}$ is equal to
(a) $2 \log _{e} 3$
(b) $3 \log _{e} 2$
(c) $\frac{1}{3} \log _{e} 2$
(d) $\frac{1}{2} \log _{e} 3$

(2)

2. If $y=A e^{2 x}+B e^{-2 x}$, then $\frac{d^{2} y}{d x^{2}}$ is
(a) y
(b) $x+y$
(c) $4 y$
(d) None of the above
3. The function $f(x)=\log (x+1)$ can be expanded in power of x by using
(a) Rolle's theorem
(b) Leibnitz's theorem
(c) Taylor's theorem
(d) Maclaurin's theorem
4. Using mean-value theorem, the point to the curve $g=x^{2}$, where the tangent is parallel to the line joining the points $(1,1)$ and $(2,4)$ is
(a) $\left(1, \frac{9}{4}\right)$
(b) $\left(\frac{3}{4}, \frac{9}{4}\right)$
(c) $\left(\frac{3}{2}, \frac{9}{4}\right)$
(d) None of the above

(3)

5. If f is an even function and $\int_{0}^{1} f(x) d x=4$, then the value of $\int_{-1}^{1} f(x) d x$ is
(a) 4
(b) -4
(c) 8
(d) -8
6. If $f(x)=[x+1]$ (the greatest integer function), then the value of $\int_{-1}^{1} f(x) d x$ is equal to
(a) 0
(b) 1
(c) 2
(d) -1
7. The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+y^{2}}$ is equal to
(a) 2
(b) 0
(c) 1
(d) Does not exist

(4)

8. The value of the integral $\int_{C} x y d x$ along the arc of a parabola $x=y^{2}$ from $(1,-1)$ to $(1,1)$ is
(a) $\frac{1}{5}$
(b) 4
(c) $\frac{3}{5}$
(d) $\frac{4}{5}$
9. The sequence $\left\{n(-1)^{n}\right\}, n \in \mathbb{N}$
(a) oscillates finitely
(b) oscillates infinitely
(c) always has a limit 0
(d) None of the above
10. The series $\sum \frac{n^{2}-1}{n^{2}+1} x^{n}, x>0$
(a) converges for any $x \geq 1$
(b) converges for any $x>0$
(c) diverges for any $x>0$
(d) diverges for any $x \geq 1$

(5)

SECTION-II

(Marks : 15)
Each question carries 3 marks

1. Test the continuity of $f(x)$ at $x=\frac{1}{2}$, where

$$
f(x)=\left\{\begin{array}{clll}
x & , & \text { if } & x \text { is rational } \\
1-x & , \text { if } & x & \text { is irrational }
\end{array}\right.
$$

(6)

2. Find the derivative of $\log _{5} x$ with respect to $\sin ^{-1} x^{2}$.

(7)

3. If

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x
$$

then prove that

$$
I_{n}=\frac{1}{n-1}-I_{n-2}
$$

(8)

4. If $f(x, y)$ be a homogeneous function of x and y of degree n, then prove that

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

(9)

5. Prove that every convergent sequence is always bounded but the converse is not true. Justify with suitable example.
