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Answer five questions, taking one
from each Unit

UNIT—I

1. State and prove Lindelof covering theorem.

2+8=10

2. (a) Let { }Gn  be a sequence of non-empty

closed sets such that—

(i) G G nn n+ Ì "1

(ii) G1 is bounded

Then prove that the intersection 

Ç ÎG n Nn , , is nonempty. 5
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(b) Prove that a set is compact if and only if

every infinite subset thereof has a limit

point in the set. 5

UNIT—II

3. (a) Prove that the range of a function

continuous on a compact set is

compact. 7

(b) If
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then show that f  is not continuous at 

( , )0 0 . 3

4. (a) Prove that a function continuous on a

compact domain is uniformly

continuous. 6

(b) If

   f x y
xy x y

x y
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6 2 3

then show that f  has a removable

discontinuity at ( , )2 3  and redefine the

function to make it continuous. 4
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UNIT—III

5. (a) If u u u un1 2 3, , , ...,  are functions of 

y y y yn1 2 3, , , ...,  and y y y yn1 2 3, , , ...,  are 

functions of x x x xn1 2 3, , , ..., , then

prove that
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(b) Prove that a function which is

differentiable at a point is also

continuous at the point. 4

6. (a) Consider the function f R R: 2 ®

defined by

  f x y

xy
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Show that the directional derivatives of 

f  at ( , )0 0  in all directions exist but the

function is not continuous at ( , )0 0 . 5

(b) Prove that a function which is

differentiable at a point admits of partial 

derivatives at the point. 5
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UNIT—IV

7. State and prove Schwarz’s theorem. 2+8=10

8. (a) Show that for the function
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f fxy yx( , ) ( , )0 0 0 0= , even though the

conditions of Schwarz’s theorem are not 

satisfied. 6

(b) Examine the function

    f x y y x y ax( , ) = + +2 2 4

for extreme values. 4

UNIT—V

9. (a) Prove that the space Rn  of all ordered

n-tuples with the metric d, where

    d x y x yi i
i

n

( , ) ( )

½

= -
é

ë
ê

ù

û
ú
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å 2

1

is a complete metric space. 8

(b) Give an example to show that the

intersection of an infinite number of

open sets is not open. 2
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10. (a) Show that every compact subset of a

metric space ( , )X d  is closed. 7

(b) Prove that every closed subset of a

compact metric space is compact. 3

H H H
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V/MAT (vi)

2 0 1 6

( 5th Semester )

MATHEMATICS

SIXTH PAPER (MATH–352)

( Real Analysis )

( PART : A—OBJECTIVE )

( Marks : 25 )

Answer all questions

SECTION—A

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct answer in the box

provided :

1. Every infinite and bounded set has at least one limit

point. This is the statement of

(a) Bolzano-Weierstrass theorem   £

(b) Heine-Borel theorem   £

(c) Lindelof covering theorem   £

(d) Cantor intersection theorem   £

/142
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2. If E RnÌ , then a point a RnÎ  is called a limit point  of E,

if every neighbourhood of the point a contains

(a) an infinite number of points of the set E   £

(b) a finite number of points of the set E    £

(c) no point of the set E   £

(d) None of the above   £

3. If lim ( )
x a

f x b
®

= , where x x x= ( , )1 2 , a a a= ( , )1 2 ,

b b b= ( , )1 2  and f f f= ( , )1 2 , then

(a) lim ( )
x a

f x b
®

=1 2   £

(b) lim ( )
x a

f x a
®

=2 2   £

(c) lim ( )
x a

f x b
®

=1 1 and lim ( )
x a

f x b
®

=2 2   £

(d) None of the above   £

4. A set is said to be compact if it is

(a) bounded   £

(b) both bounded and closed   £

(c) open   £

(d) None of the above   £

( 2 )
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5. If u x= cos , v x y= sin cos , w x y z= sin sin sin , then

¶

¶

( , , )

( , , )

u v w

x y z

is equal to

(a) sin sin sin3 2x y z   £

(b) sin sin sinx y z2 3    £

(c) -sin sin sin3 2x y z   £

(d) None of the above   £

6. If

f x y
xy

x y

x y
x y

x y

( , )
, ( , ) ( , )

, ( , ) ( ,

=
-

+

æ

è
ç
ç

ö

ø
÷
÷ ¹

=

2 2

2 2
0 0

0 0 0)

ì

í
ï

î
ï

then f xy( , )0  is equal to

(a) x   £

(b) y   £

(c) 0   £

(d) None of the above   £

7. If ( , )a b  be a point  of the domain contained in R2 of a

function f  such that f x  and f y are both differentiable at 

( , )a b , then

(a) f a b f a bxy yx( , ) ( , )>    £

(b) f a b f a bxy yx( , ) ( , )<    £

(c) f a b f a bxy yx( , ) ( , )=    £

(d) None of the above   £

( 3 )
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8. The function f x y y xy x x( , ) = + + +2 2 34 3  has

(a) a minimum at ( , )0 0    £

(b) a maximum at ( , )0 0    £

(c) neither a minimum nor a maximum at ( , )0 0   £

(d) None of the above   £

9. Let ( , )X d  be a complete metric space and Y  be a subspace

of X . Then Y  is complete if and only if it is

(a) closed in ( , )X d    £

(b) open in ( , )X d    £

(c) both closed and open in ( , )X d    £

(d) None of the above   £

10. Let A and B be two subsets of a metric space ( , )X d . Then

(a) A B B AÌ Þ Ì    £

(b) A B A BÈ = È    £

(c) A B A BÇ = È    £

(d) None of the above   £

( 4 )
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SECTION—B

( Marks : 15 )

Each question carries 3 marks

Answer the following :

1. Show that a set is closed if and only if its complement is

open.

( 5 )
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2. Define convex set and state the intermediate value

theorem.

( 6 )
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3. Show that the function f , where

f x y

x y

x y
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, ( , ) ( , )
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+
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is continuous at ( , )0 0 .

( 7 )
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4. Give an example of a function f x y( , ) such that the

conditions of Young’s theorem are not satisfied but 

f fxy yx( , ) ( , )0 0 0 0= . Justify it.

( 8 )
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5. In any metric space ( , )X d , show that the union of an

arbitrary family of open sets is open.

H H H

( 9 )
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