#### 2014

(5th Semester)

#### **MATHEMATICS**

Paper No.: MATH-352

(Real Analysis)

Full Marks: 75

Time: 3 hours

( PART : B—DESCRIPTIVE )

( Marks: 50 )

The figures in the margin indicate full marks for the questions

Answer **five** questions, taking **one** from each Unit

#### UNIT-I

- 1. State and prove Cantor's intersection theorem. 2+8=10
- 2. (a) Prove that every open cover of a set admits of a countable sub-cover.
  - (b) Prove that every open cover of a compact set admits of a finite sub-cover.

(Turn Over)

6

# UNIT-II

3. (a) Evaluate the limit for the function  $f(x) = \frac{x^2 - y^2}{x^2 + 11^2}$ 

4

when  $(x, y) \to (0, 0)$ .

- Prove that the range of a function 6 continuous on a compact set is compact. (b)
- 4. (a) Let  $\lim_{x\to a} f(x) = b$  and let  $b = (b_1, ..., b_m), f = (f_1, ..., f_m).$ Show that  $\lim_{x\to a} f_i(x) = b_i$ ,  $1 \le i \le m$  and 6 conversely.
  - (b) Show that the function  $f(x, y) = x^2 + 2xy;$   $(x, y) \neq (1, 2)$ f(x, y) = 0; (x, y) = (1, 2)

has a removable discontinuity at (1, 2). 4

# UNIT—III

5. (a) Let

A STATE OF

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}; & \text{when } (x, y) \neq (0, 0) \\ 0; & (x, y) = (0, 0) \end{cases}$$

Show that f is continuous and possesses partial derivatives but not differentiable at (0, 0).

(b) If
$$u = \frac{x+y}{1-xy}, \ v = \frac{(x+y)(1-xy)}{(1+x^2)(1+y^2)}$$
find  $\frac{\partial(u, v)}{\partial(x, y)}$ .

- 6. (a) Prove that a function which is differentiable at a point admits of partial derivatives at the point.
  - (b) Let

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2}; & x^2 + y^2 \neq (0, 0) \\ 0; & x^2 + y^2 = (0, 0) \end{cases}$$

Show that f is a directional derivative at (0, 0) in any arbitrary direction  $\beta = (l, m)$ ,  $l^2 + m^2 = 1$ , but f is not continuous at (0, 0).

#### UNIT-IV

- 7. State and prove Taylor's theorem.
- 2+8=10

8. (a) If

$$f(x, y) = \begin{cases} (x^2 + y^2) \tan^{-1}(y/x); & x \neq 0 \\ \frac{\pi}{2}y^2 & ; & x = 0 \end{cases}$$

show that  $f_{xy}(0, 0) \neq f_{yx}(0, 0)$ .

5

G15-300/144a

BALL (Turn Over)

(b) Find all the maxima and minima of the function given by

$$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$$
 5

#### UNIT-V

- 9. (a) Prove that every compact subset A of a metric space (X, d) is bounded.
  - (b) Let  $l_{\infty}$  be the set of all bounded numerical sequences  $\{x_n\}$  in which the metric d is defined by

$$d(x, y) = \sup_{n} |x_n - y_n| \quad \forall \ x = \{x_n\}, \ y = \{y_n\} \in l_{\infty}$$
Show that  $(l_{\infty}, d)$  is complete space.

10. Show that the set  $R^n$  of all ordered n-tuples with the function d defined by

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

$$\forall x = (x_1, x_2, ..., x_n)$$

$$y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$$

is a metric space.

10

show that fight of a fight of

#### 2014

(5th Semester)

# MATHEMATICS

Paper No.: MATH-352

(Real Analysis)

( PART : A—OBJECTIVE )

( Marks: 25)

Answer all questions

SECTION—A

(Multiple Choice)

( Marks: 10 ) and outcomes does (a)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the box provided:

| 1. | $\Lambda$ | non-void s  | et is sai | d to | heclose | d if every limi | it poin |
|----|-----------|-------------|-----------|------|---------|-----------------|---------|
|    | (a)       | open        |           |      | -       | 21916 kL03      | (       |
|    | (b)       | closed      |           |      |         | lasqua)         | (3)     |
|    | (c)       | bounded     |           |      | K-W     | CONTRACT        |         |
|    | (d)       | interior pe | oint      |      | ·       | eldesnuocht.    | (14)    |

| 2          | . A s   | et is said to be           | compact   | if it is bo | oth                  |
|------------|---------|----------------------------|-----------|-------------|----------------------|
|            | (a)     | bounded and c              | losed     |             |                      |
|            | (b)     | open and close             | d 🗸 🗆     |             |                      |
|            | (c)     | bounded and o              | pen       |             |                      |
|            | (d)     | None of the al             | bove      |             |                      |
| 3          |         | function is der            | ivable at | a point of  | its domain, then the |
|            | (a)     | continuous                 |           |             |                      |
|            | (b)     | uniformly con              | tinuous   |             |                      |
|            | (c)     | not continuou              | as C      | 1           |                      |
|            | (d)     | None of the a              | above     |             |                      |
|            |         |                            |           |             |                      |
| <b>4</b> . |         | is a continuon the image o | f f is    |             | ed on a compact set  |
|            | (a)     | complete                   |           |             |                      |
|            | (b)     | compact                    |           |             | S. C. Higg AXes      |
|            | (5)     | compact                    | П         |             | 3 basaiq di          |
|            | (c)     | countable                  |           |             | b bac a Vis          |
|            | (d)     | uncountable                |           |             | ind) and on passing  |
| V/MA       | AT (vi) | /144                       |           |             |                      |

| If $u = f(x, y)$<br>derivatives in<br>sufficient con-<br>F(u, v) = 0 is t | dition | that they | have<br>xy-pla<br>satisfy | continuous<br>ine, a necess<br>a functiona | partial<br>ary and<br>il region |
|---------------------------------------------------------------------------|--------|-----------|---------------------------|--------------------------------------------|---------------------------------|
|                                                                           |        |           |                           |                                            |                                 |

$$(a) \quad \frac{\partial(u,v)}{\partial(x,y)} = F(u,v) \qquad \Box \qquad (b) \quad \frac{\partial(x,y)}{\partial(u,v)} = 0$$

(c) 
$$\frac{\partial(u,v)}{\partial(x,y)} \neq 0$$
  $\Box$  (d)  $\frac{\partial(u,v)}{\partial(x,y)} = 0$ 

6. The directional derivative of  $f(x, y) = 2x^2 - xy + 5$  at (1, 1) in the direction of a unit vector  $\beta = \frac{1}{5}(3, -4)$  is

(a) 
$$\frac{5}{13}$$
  $\Box$  (b)  $\frac{13}{5}$   $\Box$ 

(c) 
$$\frac{13}{3}$$
  $\Box$  (d)  $\frac{3}{13}$   $\Box$ 

7. If (a, b) be a point of the domain contained in  $R^2$  of function f such that  $f_x$  and  $f_y$  are both differentiable (a, b), then  $f_{xy}(a, b) = f_{yx}(a, b)$ . This theorem is named

### SECTION-B

(Very Short Answer)

( Marks: 15)

# Each question carries 3 marks

1. Show that the union of an arbitrary family of open sets is open.

POLINY BANY

2. State intermediate value theorem.

3. If 
$$u_1 = \frac{x_2 x_3}{x_1}$$
,  $u_2 = \frac{x_1 x_3}{x_2}$  and  $u_3 = \frac{x_1 x_2}{x_3}$ , prove that  $J(u_1, u_2, u_3) = 4$ .

4. State the necessary condition for an extreme value

5. Let X be an infinite set with the discrete metric. Show that (X, d) is not compact.

\*\*\*