2021

(CBCS) (3rd Semester) **ELECTRONICS**

THIRD PAPER [Electronic Devices and Amplifiers]

Full Marks: 75 Time: 2 hours

INSTRUCTIONS TO CANDIDATES

(Please read the instructions carefully before you start writing your answers)

- 1. Questions should be attempted as per instructions.
- 2. Do not copy the Questions. Indicate the Section and Question No. clearly while attempting the answer.
- For Multiple choice answers, candidate should indicate the Question No., Sub. No., (if any) and the correct answer. For example :
 - 1. Name the State capital of Mizoram.
 - (a) Lunglei
 - (b) Aizawl
 - (c) Champhai

Candidate should provide answer as—Q. No. 1 : (b) Aizawl [Candidate should avoid writing only (b)]

- Section B Answer to Short Answer should be limited to One Page only.
- 5. The figures in the margin indicate full marks for the questions.

EL/III/EC/05

2021

(CBCS) (3rd Semester) **ELECTRONICS**

THIRD PAPER [Electronic Devices and Amplifiers]

Full Marks: 75 Time: 2 hours

The figures in the margin indicate full marks for the questions

SECTION : A – OBJECTIVE

(Marks: 30)

Choose the correct answer from the following:

1x30=30

- 1. The gate of a *JFET* is biased
 - a) reverse
 - b) forward
 - c) reverse as well as forward
 - d) one side
- 2. The input impedance of a *JFET* is that of an ordinary transistor.
 - a) equal to
 - b) less than
 - c) more than
 - d) twice
- 3. A *MOSFET* can be operated with.....
 - a) negative gate voltage only
 - b) positive gate voltage only
 - c) positive as well as negative gate voltage
 - d) neither positive nor negative gate voltage
- 4. Which of the following devices has the highest input impedance?
 - a) JFET
 - b) MOSFET
 - c) crystal diode
 - d) ordinary transistor

- 5. A *MOSFET* uses the electric field of ato control the channel current.
 - a) capacitor
 - b) battery
 - c) generator
 - d) voltage
- 6. The pinch-off voltage in a *JFET* is analogous to voltage in a vacuum tube.
 - a) anode
 - b) cathode
 - c) grid cut off
 - d) fluoresce gas
- 7. The device that exhibits negative resistance region is
 - a) diac
 - b) triac
 - c) transistor
 - d) UJT
- 8. The *UJT* may be used as
 - a) an amplifier
 - b) a sawtooth generator
 - c) a rectifier
 - d) a regulator
- 9. An SCR is a triggered device.
 - a) voltage
 - b) current
 - c) voltage as well as current
 - d) pulse
- 10. An SCR is turned off by
 - a) reducing anode voltage to zero
 - b) reducing gate voltage to zero
 - c) reverse biasing the gate
 - d) reducing the holding & latching currents
- 11. When the temperature increases, the inter-base resistance (R_{BB}) of a UJT
 - a) increases
 - b) decreases
 - c) remains the same
 - d) insufficient data

- 12. In an *SCR* circuit, the angle of conduction can be changed by
 - a) changing anode voltage
 - b) changing gate voltage
 - c) reverse biasing the gate
 - d) reducing the holding currents
- 13. If the collector current flows at all times during the full cycle of the input signal, the power amplifier is known as power amplifier.
 - a) Class A
 - b) Class B
 - c) Class C
 - d) Class AB
- 14. The maximum overall efficiency of a class-B push-pull amplifier cannot exceed ...
 - a) 100 %
 - b) 78.5 %
 - c) 50 %
 - d) 85 %
- 15. A class-B push-pull amplifier has the main advantage of being free from ...
 - a) any circuit imbalance
 - b) unwanted noise
 - c) even-order harmonic distortion
 - d) dc magnetic saturation effects
- 16. In the double tuned circuit, if the mutual inductance between the two tuned circuits is decreased, the level of resonance curve is....
 - a) remains the same
 - b) lowered
 - c) raised
 - d) insufficient
- 17. The voltage gain of a tuned amplifier is at resonant frequency.
 - a) minimum
 - b) maximum
 - c) half-way between maximum and minimum
 - d) zero

- 18. A tuned amplifier uses load
 - a) resistive
 - b) capacitive
 - c) LC tank
 - d) inductive
- 19. A transistor behaves as a linear device for
 - a) small signals only
 - b) large signals only
 - c) both small and large signals
 - d) no signal
- 20. The dimension of h_i parameter is
 - a) mho
 - b) ohm
 - c) farad
 - d) henry
- 21. If temperature changes, h parameters of a transistor....
 - a) may or may not change
 - b) do not change
 - c) also change
 - d) is zero
- 22. RC coupling is used for amplification
 - a) voltage
 - b) current
 - c) power
 - d) frequency
- 23. The frequency response of Transformer coupling is
 - a) good
 - b) very good
 - c) excellent
 - d) poor
- 24. An autotransformer consists of 200-turn winding connected to 200 V a.c. supply mains. For getting 24 V output, the winding should be tapped at turn number ...
 - a) 24
 - b) 12
 - c) 100
 - d) 72

- 25. When a differential amplifier is operated single-ended......
 - a) the output is grounded
 - b) one input is grounded and signal is applied to the other
 - c) both inputs are connected together
 - d) the output is not inverted

26. The common-mode gain is

- a) very high
- b) very low
- c) always unity
- d) unpredictable
- 27. If A_{DM} = 3500 and A_{CM} = 0.35, the *CMRR*_{dB} is
 - a) 20 *dB*
 - b) 100 *dB*
 - c) 80 *dB*
 - *d*) 60 *dB*
- 28. Current cannot flow to ground through
 - a) a mechanical ground
 - b) an a.c. ground
 - c) a virtual ground
 - d) an ordinary ground
- 29. A certain non-inverting amplifier has R_i of $1k\Omega$ and R_f of 100 $k\Omega$. The closed loop voltage gain is
 - a) 100,000
 - b) 1000
 - c) 101
 - d) 100
- 30. For an OP-amp with negative feedback, the output is
 - a) equal to the input
 - b) increased
 - c) fed back to the inverting input
 - d) fed back to the noninverting input

SECTION : B - SHORT ANSWER

(Marks : 45)

Answer the following questions in not more than 1 (one) page each, choosing 3 (three) questions from each unit.

3x15=45

Unit I

- 1. Explain the working of *N channel DE MOSFET* along with the suitable diagram
- 2. Draw and explain the drain characteristic of *JFET*. What is Pinch-off Voltage?
- 3. Determine the value of I_D for the circuit shown below. The data sheet for this particular *MOSFET* gives $I_{D(on)} = 10 \text{ mA}$ at $V_{GS} = 10 \text{ V}$ and $V_{GS(th)} = 1.5 \text{ V}$.

4. The data sheet of a *JFET* gives the following information: $I_{DSS} = 3 mA$, $V_{GS(off)} = -6 V$ and $g_{m(max)} = 5000 \ \mu$ s. Determine the trans-conductance for $V_{GS} = -4 V$ and find drain current I_D at this point

Unit II

- 5. Draw the equivalent circuit of a *UJT* and discuss its working from the circuit.
- 6. Explain the construction of a *SCR* with its transistor analogy. Sketch the *V-I* characteristics and show the holding and latching current..
- 7. Draw the circuit diagram of a *SCR* full wave rectifier. Derive the expression for average voltage V_{av} and average current I_{av} .
- 8. Given silicon UJT has inter-base resistance of 10 kΩ. It has R_{B1} = 6 kΩ with I_E = 0. Find,
 (a) UJT current if V_{BB} = 20 V and V_E is less than V_P.
 (b) η and V_A
 (c) Peak point voltage V_P

Unit III

- Show that the efficiency of transformer coupled Class A amplifier is 50% in an ideal case.
- Draw a neat circuit diagram of Class-B push-pull amplifier and explain its working.
- 11. Why tuned circuits are not used for low frequency amplification? It is desired to obtain a bandwidth of 200 kHz at an operating frequency of 10MHz using a double tuned circuit. What value of co-efficient of coupling should be used?
- 12. With a neat diagram, explain the working of double-tuned amplifier.

Unit IV

- 13. A transistor used in CE arrangement has the following set of h parameters when the d.c. operating point is V_{CE} = 10 volts and I_C = 1 mA: h_{ie} = 2000 Ω ; h_{oe} = 10⁻⁴ mho, h_{re} = 10⁻³; h_{fe} = 50. Determine (i) input impedance (ii) current gain (iii) voltage gain. The a.c. load seen by the transistor is r_L = 600 Ω and a source resistance of R_S = 2k Ω .
- 14. Draw the *h*-parameter equivalent circuit of transistor in CE configuration. Express the input impedance, current gain and voltage gain of the CE configuration in terms of *h*-parameters and load.
- 15. With a suitable diagram, explain the frequency response of an RCcoupled Transistor amplifier
- 16. Explain the construction and operation of transformer-coupled amplifier

Unit V

- 17. With the help of a circuit diagram, explain the operation of a balanced differential amplifier.
- 18. What is the difference between common-mode signals and differentialmode signals? A differential amplifier has an output of 1V with a differential input of $10 \ mV$ and an output of $5 \ mV$ with a common-mode input of $10 \ mV$. Find the CMRR in dB.
- 19. Why the 'summing point' of the Operational Amplifier called 'virtual ground'? What are the characteristics of an Ideal Operational Amplifier?
- 20. Derive an expression for overall gain in an inverting OP-AMP.

***** End of question *****