2021

(CBCS) (5th Semester) **ELECTRONICS**

SEVENTH PAPER [Computer Fundamentals]

Full Marks: 75 Time: 2 hours

INSTRUCTIONS TO CANDIDATES

(Please read the instructions carefully before you start writing your answers)

- 1. Questions should be attempted as per instructions.
- 2. Do not copy the Questions. Indicate the Section and Question No. clearly while attempting the answer.
- 3. For Multiple choice answers, candidate should indicate the Question No., Sub. No., (if any) and the correct answer. For example :
 - 1. Name the State capital of Mizoram.
 - (a) Lunglei
 - (b) Aizawl
 - (c) Champhai

Candidate should provide answer as—Q. No. 1 : (b) Aizawl [Candidate should avoid writing only (b)]

- 4. Section B Answer to Short Answer should be limited to **One Page** only.
- 5. The figures in the margin indicate full marks for the questions.

2021

(CBCS) (5th Semester) **ELECTRONICS**

SEVENTH PAPER [Computer Fundamentals]

Full Marks: 75 Time: 2 hours

The figures in the margin indicate full marks for the questions

SECTION : A – OBJECTIVE

(Marks: 30)

Choose the correct answer from the following:

1x30=301.

- 1. The binary system uses powers of for positional values.
 - (a) 2
 - (b) 10
 - (c) 8
 - (d) 16
- 2. Which of the following Binary numbers is equivalent to decimal 24
 - (a) 1101111
 - (b) 11000
 - (c) 111111
 - (d) 11001
- 3. Name the number system which uses alphabet as well as numerals
 - (a) Binary
 - (b) Octal number system
 - (c) Decimal number system
 - (d) Hexadecimal number system
- 4. The parity of the Binary number system 100110011
 - (a) is even
 - (b) is odd
 - (c) 4
 - (d) 8

- 5. The string of 8 bits is known as
 - (a) Nibble
 - (b) Byte
 - (c) Octed
 - (d) Quad

6. Convert the binary 10101 to its decimal equivalent

- (a) 21
- (b) 12
- (c) 22
- (d) 31

7. Different variables used in Boolean algebra can have values of

- (a) 0 or 1
- (b) low or high
- (c) true or false
- (d) ON or OFF
- 8. The given Boolean expression is $Y = A\overline{B} + B\overline{A}$. If A = 1 and B = 1. then Y =
 - (a) 1
 - (b) 0
 - (c) either 1 or 0
 - (d) 10
- 9. In Boolean algebra, the plus sign (+) indicates.....
 - (a) AND operation
 - (b) OR operation
 - (c) NOT operation
 - (d) XOR operation
- 10. $(\overline{A + B}) = \dots$
 - (a) $\overline{A} + \overline{B}$
 - (b) $\overline{A} \overline{B}$
 - (c) $\overline{A} \cdot \overline{B}$
 - (d) $\overline{A.B}$

- 11. The NAND gate is AND gate followed by
 - (a) NOT gate
 - (b) OR gate
 - (c) AND gate
 - (d) XOR gate
- 12. A + A.B =.....
 - (a) B
 - (b) A
 - (c) $\overline{A} + B$
 - (d) AB
- 13. When reset is high and set is low in a NOR D-latch then the output will be
 - (a) No change
 - (b) High
 - (c) Low
 - (d) Invalid
- 14. _____ is an example for combinational circuit
 - (a) Flip flop
 - (b) Register
 - (c) Multiplexer
 - (d) Counter
- 15. The flip flop is a _____ device
 - (a) Unstable
 - (b) Bi-stable
 - (c) Both a and b
 - (d) Uni-Stable

16. The set-reset flip flops constructed by cross-coupling of _____ gates

- (a) AND or NAND
- (b) NAND or NOR
- (c) XNOR or NOR
- (d) NOT or OR
- 17. How many bits of information do flip-flop store?
 - (a) One-bit
 - (b) Ten-bit
 - (c) Two-bit
 - (d) Three-bit

- 18. How many of states are there in a 2 bit counter?
 - (a) One
 - (b) Sixteen
 - (c) Eight
 - (d) Four
- 19. In which of the following storage devices recording is done by burning tiny pits on a circular disk?
 - (a) Punched card
 - (b) Floppy disk
 - (c) Optical disk
 - (d) Magnetic tape
- 20. Which of the following is the largest unit of storage?
 - (a) Gigabyte (GB
 - (b) Kilobyte (KB)
 - (c) Megabyte (MB)
 - (d) Terabyte (TB)
- 21. The magnetic tape is generally a plastic ribbon coated with _____
 - (a) Magnesium oxide
 - (b) Chromium dioxide
 - (c) Zinc oxide
 - (d) Copper oxide
- 22. Which of the following is the correct representation for a storage capacity of a tape?
 - (a) Data recording density = Storage capacity
 - (b) Length = Storage capacity
 - (c) Storage capacity= Length x data recording density
 - (d) Storage capacity= Length + data recording density
- 23. The disk's surface is divided into a number of invisible concentric circles called:
 - (a) Drives
 - (b) Tracks
 - (c) Slits
 - (d) References

- 24. Rotation of the disk must vary _____ with the radius of the disk.
 - (a) directly
 - (b) accordingly
 - (c) concurrently
 - (d) inversely
- 25. Input or output devices that are connected to computer are called
 - (a) Input/Output Subsystem
 - (b) Peripheral Devices
 - (c) Interfaces
 - (d) Interrupt

26. How many types of modes of I/O Data Transfer?

- (a) 3
- (b) 2
- (c) 4
- (d) 5

27. The method which offers higher speeds of I/O transfers is _____

- (a) Interrupts
- (b) Memory mapping
- (c) Program-controlled I/O
- (d) DMA
- 28. In memory-mapped I/O, _____.
 - (a) the I/O devices have a separate address space
 - (b) the I/O devices and the memory share the same address space
 - (c) a part of the memory is specifically set aside for the I/O operation
 - (d) the memory and I/O devices have an associated address space
- 29. The method of accessing the I/O devices by repeatedly checking the status flags is
 - (a) Program-controlled I/O
 - (b) Memory-mapped I/O
 - (c) I/O mapped
 - (d) DMA

- 30. The method of synchronising the processor with the I/O device in which the device sends a signal when it is ready is(a) Exceptions

 - (b) Signal handling(c) Interrupts(d) DMA

SECTION : B – SHORT ANSWER

(Marks : 45)

Answer the following questions in not more than 1 (one) page each, choosing 3 (three) questions from each unit. 3x15=45

UNIT I

- Perform the 2's complemental subtraction of the following binary numbers

 (i) 10110₂ 11010₂
 (ii) 10101₂ 00111₂
- 2. Perform division of the following binary numbers: (i) $1001011_2 \div 11_2$ (ii) $11010_2 \div 101_2$
- 3. Explain in brief the working principle of Binary Weight Resistor Digital to Analog converter.
- 4. Write short notes on Digital Voltmeter.

UNIT II

- 5. What are NOR and NAND gates? Why are they called universal gates?
- 6. Discuss OR gate operation. Draw the schematic diagram of 2-input OR gate. Give its truth table.
- 7. State and Prove De Morgan's Second theorem.
- 8. Prove the following Boolean identity.

 $(A+B)(A+\overline{B})(\overline{A}+C) = AC$

UNIT III

- 9. Write six differences between Combinational circuit and Sequential circuit
- 10. What is flip flop? Explain RS NAND gate latch with the truth table.
- 11. Explain shift left Register using D-flip flop.
- 12. Discuss the working principle of an Asynchrous or Ripple Counter.

UNIT IV

- 13. Differentiate between PROM and EPROM
- 14. Write advantages and limitations of magnetic tapes as a secondary storage device.
- 15. Explain how data is stored and organized on a magnetic disk.
- 16. How a system records/reads data on/from an optical disk.

UNIT V

- 17. What is DMA? Explain briefly how the DMA controller works?
- 18. Draw the flow chart of programmed I/O and write the three instruction for the transfer of each byte.
- 19. State and explain the four types of I/O command.
- 20. Explain Strobe Control method of Asynchronous data transfer.

***** End of question *****