\mathbf{a}	\mathbf{n}	-	^
•			,
	٠,		_

(1st Semester)

ELECTRONICS

FIRST PAPER

(Electronic Measuring Instruments and Circuit Analysis)

(PART : A – OBJECTIVE)

(Marks : 20)

Answer all questions

SECTION - I

(*Marks* : 5)

Each question carries 1 mark

Tick ($\sqrt{\ }$) the correct answer in the brackets provided:

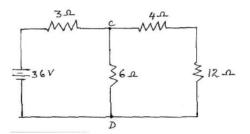
1.	Which of the following would be used as filter capacitor for 1000 V
	power supply?

(a) Paper capacitor	()
(b) Air capacitor	()
(c) Mica capacitor	()
(d) Electrolytic capacitor	()

2.	er volt reads	50 V				
	full-scale, its internal res	sistanc	ee is			
	(a) $20 \text{ k}\Omega$	()			
	(b) $50 \text{ k}\Omega$	()			
	(c) $10 \text{ k}\Omega$	()			
	(d) $100 \text{ k}\Omega$	()			
3.	In which part of L-C-R	occurs?				
	(a) Capacitor	()			
	(b) Resistor	()			
	(c) Inductor	()			
	(d) All three above	()			
4.	Which factor makes the element? (a) Variation in pressure.	uctor a non-	linear			
	(b) Variation in tempera	ture		()	
	(c) Variation in density		substance	()	
	•			(,	
	(d) Constituents of the s	ubstar	ice	()	
5.	The Norton resistance o 2 A. If the network is lethrough the load is (a) 20 A					
	(b) 0.5 A	()			
	(c) 4 A	()			
	(d) 1 A	()			
	* /	`	/			

SECTION - II

(*Marks* : 15)


Each question carries 3 marks

1. How is coefficient of coupling related to mutual and self-inductance of two coils? What is its significance?

- 2. Explain the working principle of Cathode-Ray-Oscilloscope (CRO).
- 3. Derive the relation between current and voltage in an a.c. circuit having inductance L and capacitance C in series.

4. State and explain Kirchhoff's current and voltage law.

5. Using Norton's theorem, calculate the current flowing through the 12 Ω resistor in the figure given below:

1+1

3

2012

(1st Semester)

ELECTRONICS

FIRST PAPER

(Electronic Measuring Instruments and Circuit Analysis)

Full Marks: 55

Time: 3 hours

(PART : B – DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

UNIT – I

- 1. (a) Define coupled circuits and coefficient of coupling.
 - (b) Show that the effective impedance of the primary circuit is modified, when it is coupled inductively with a secondary circuit. 5

Or

- (a) Describe the construction of ceramic capacitor. Why is ceramic capacitor preferred over mica or paper capacitor? 2+2
- (b) Compare air-core, iron-core and ferrite-core inductors.

UNIT – II

- 2. (a) Explain the theory of transformer and discuss its working. Describe the various losses occurring in transformers.
 - (b) Explain the uses of transformer losses with special reference in long distance power transmission.

(a) What is multimeter? Define the sensitivity of a multimeter. 1+1

(b) Explain with circuit diagram, the working of multimeter as voltmeter and ammeter. 5

UNIT – III

3. Explain the method of solving a.c. problems using complex number notations. Investigate such a technique in the behavior of L-C-R series circuit.

Or

(a) What is *j*-operator? Briefly explain the significance of *j*-operator.

1+3

(b) Define filter of a circuit. Explain band-pass and band-stop filters.

1+2

2

4

3

UNIT - IV

4. (a) Explain nodal analysis and matrices of circuit analysis of a network. $2\frac{1}{2} + 2\frac{1}{2}$

(b) What do you mean by active and passive elements?

Or

(a) State and explain ladder method of network analysis.

(b) How will you convert a voltage source into a current source?

UNIT - V

5. (a) State and explain the Norton's theorem.

1+3

(b) Show that the Norton's equivalent circuit can be found from the Thevenin's equivalent circuit.

Or

(a) State maximum power transfer theorem and give its applications.

3+1

3

(b) Explain the reciprocity theorem.