(2)

2017

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

Paper No.: BCA-202

[Mathematics—II (Discrete Mathematics)]

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

1. (a) In a survey, it is found that 20 people like product A, 30 people like product B and 28 like product C. If 15 people like products A and B; 16 people like products B and C; 12 people like products C

and *A* and 8 people like all the three products, find—

- (i) how many people are surveyed in all;
- (ii) how many like product B only. 5
- (b) In a Boolean algebra B, prove that $(x+y)' = x' \cdot y' \text{ for all } x, y \in B.$ 5

Or

(c) Let $\langle L, \leq \rangle$ be a lattice in which * and \oplus denote the operation of meet and join respectively. For any $a, b \in L$, show that

$$a \le b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$$
 5

(*d*) In Boolean algebra $B \forall x, y, z \in B$, prove that

$$x + x' \cdot (x + y) + y \cdot z = x + y$$
 5

2. (a) Without truth table, show that $(P \land Q) \lor (P \lor (P \lor Q)) \Leftrightarrow (P \lor Q)$ 5

G7**/460a**

(Turn Over)

G7**/460a**

(Continued)

- (d) The 2nd, 3rd and 4th terms in the expansion of $(x+y)^n$ are 240, 720 and 1080 respectively. Find the values of x, y and n.
 - Show that the set $G = \{1, \omega, \omega^2\}$, where ω

5

5

5

5

5

(b) Prove that the set $G = \{0, 1, 2, 3, 4, 5\}$ is a finite Abelian group of order 6 with respect to addition modulo 6.

is an imaginary cube root of unity, is a

group with respect to multiplication.

Or

- (c) If H_1 and H_2 are two subgroups of a group G, then show that $H_1 \cap H_2$ is also a subgroup of G.
- (d) State and prove Lagrange's theorem. 5
- **5.** (a) Define bipartite graphs. Draw the graph of $k_{2,4}$; $k_{3,3}$ and $k_{3,5}$. 2+3=5
 - (b) Show that in any digraph, the sum of all in-degrees is equal to the sum of all out-degrees and each sum being equal to the number of edges.

(b) Obtain the principal conjunctive normal form of the formula

$$(P \to R) \land (Q \rightleftharpoons P).$$
 5

Or

(c) By using the truth table, prove that

$$(P \to Q) \land (Q \to R) \Rightarrow P \to R$$

(d) Obtain the principal disjunctive normal form of

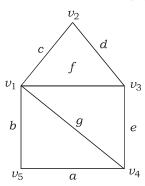
$$P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$$
 5

- **3.** (a) A committee of 5 is to be formed out of 6 men and 4 ladies. In how many ways can this be done, when—
 - (i) at least 2 ladies are included;
 - (ii) at most 2 ladies are included?
 - (b) How many numbers are there between 100 and 1000, which have exactly one of their digits as 8?

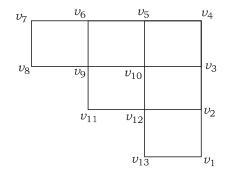
Or

(c) Find the 10th term in the expansion of

$$\left(\frac{a}{b} - \frac{2b}{a^2}\right)^{15}$$


5

5


5

Or

Write the adjacency and incidence matrices for the following graph:

(d) Define Hamiltonian circuits. Check whether the following graph has Hamiltonian circuit or not:

* * *

5

5

Subject Code : II/E	3CA/202	Booklet No. A
To be filled in by		Date Stamp
DEGREE 2nd Semo (Arts / Science / C) Ex	Commerce / xam., 2017	
Paper		To be filled in by the Candidate
INSTRUCTIONS TO	CANDIDATES	DEGREE 2nd Semester
 The Booklet No. of the quoted in the answer descriptive type queversa. 	r script meant for	(Arts / Science / Commerce /) Exam., 2017
2. This paper should be and submitted with of the commend Examination.	nin <u>1 (one) Hour</u>	Roll No
3. While answering the	-	Subject
booklet, any cuttin writing or furnishin		Paper
answer is prohibited if required, should		Descriptive Type
the main Answer B given in each que followed for answeri only.	Book. Instructions estion should be	Booklet No. B
Signature of Scrutiniser(s)	Signature of Examiner(s)	Signature of Invigilator(s)

www.gzrsc.edu.in

/460

2017

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

Paper No.: BCA-202

[Mathematics—II (Discrete Mathematics)]

(PART : A—OBJECTIVE)

(Marks : 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(*Marks*: 15)

- **I.** Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1 \times 10 = 10$
 - 1. Two sets P and Q are said to be disjoin, if
 - (a) $P \cap Q = P$ (
 - (b) $P \cup Q = U$ ()
 - (c) $P \cap Q = \emptyset$ ()
 - (d) $P \cap Q = \{0\}$ ()

/460

2. Bot	th the join and meet operations are			
(a)	commutative ()			
(b)	associative ()			
(c)	distributive ()			
(d)	All of the above ()			
3. Wh	ich of the following is not a statement?			
(a)	The earth is round. ()			
(b)	Close the door. ()			
(c)	7 + 4 < 9 ()			
(d)	India is a country. ()			
II/BCA/202 /460				

4.	Which	of the	following	implications	is	true?
	** 111011	OI CIIC		mphoations	10	uc

(a)
$$P \lor Q \Rightarrow P$$
 ()

(b)
$$P \Rightarrow P \wedge Q$$
 ()

(c)
$$P \lor Q \Rightarrow Q$$
 ()

(d)
$$P \Rightarrow P \rightarrow Q$$
 ()

5. If
$${}^{n}P_{4} = 20 \times {}^{n}P_{2}$$
, then the value of *n* is

6.		term inc $ + \frac{1}{x} \Big)^9 \text{ is} $	lepei	ndent of x in the expansion of
	(a)	76	()
	(b)	84	()
	(c)	96	()
	(d)	68	()
7.		_		cture $(G, *)$ is said to be a semiary operation $*$ is
	(a)	associat	ive	()
	(b)	commut	ative	e ()
	(c)	distribu	tive	()
	(d)	All of the	e abo	ove ()
8.	non-	empty s	subse	and sufficient condition for a let H of a group G to be a let $HH^{-1} =$
	(a)	H^{-1}	()
		1 (
		0 (
	(d)	Н	())

9. A	vertex of degree	zero is call	led	
(a) isolated vertex	()	l	
(b) terminal vertex	. ()	
(c	cut point	()		
(a	l) cut vertex	()		
	et G be a connecte e number of edges			
(a	u) n ()			
(b	$\frac{n}{2}$ ()			
(c	e) n-1 ()		
	$\frac{n(n-1)}{2} \qquad ($			
II. Tick (∕) either True or	False :		1×5=5
	Boolean algeb + $(x \cdot y) = y$		$y \in B$ such the	hat
		True () / False ()
II/BCA/202 /	460			

2. Binomial expansion	of $(a+b)^r$	has (r	n+1) terms	S.
	True () /	False ()
3. In mathematical log	gic, $P \wedge T$	$\Leftrightarrow P$		
	True () /	False ()
4. In any group, the id order two.	entity eler	ment <i>e</i>	is always	of
	True () /	False ()
5. A graph is said to b the same degree.	e regular,	if ever	y vertex h	ıas
	True () /	False ()

(7)

SECTION—II

(*Marks*: 10)

III. Answer the following questions:

 $2 \times 5 = 10$

1. If *A* and *B* are two sets such that n(A) = 40, n(B) = 25 and $n(A \cup B) = 53$, find $n(A \cap B)$.

2. How many 9-digit numbers of different digits can be formed?

3. Write the truth table for biconditional statement.

4. Define planar and non-planar graph.

(11)

5. Find the order of each element of the multiplicative group $\{1, -1, i, -i\}$.

G7—290**/460** II/BCA/202