VI/CHEM (xii) (b)

2014

(6th Semester)

CHEMISTRY

TWELFTH (B) PAPER

Course No.: CHEM-364

(Natural Products)

Full Marks: 75

Time: 3 hours

(PART : B-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- 1. (a) What is Hofmann degradation? Discuss with suitable example.
 - (b) Give the structural formula of an indole alkaloid.
 - (c) What is nicotine?

14G-200/560a (Turn Over)

OR

2.	(a)	Write in brief about me terpenone and give the formula of pinene.	enthol an structura	d d 7
	(b)	What are terpenes and terp	enoid?	3
3.	(a)	How is IR useful in determined structure of compo		3
	<i>(b)</i>	Give the number of peaks NMR spectroscopy of the compounds: (i) Benzene (ii) Methane (iii) Methanol		
	(c)	What are the peaks observed spectra of ethanol? OR		2½
4.	(a)	How would you determine the functional groups present in c by chemical method? (i) —CHO (ii) —OH	following ompound	5
(,	Discuss in brief about the chemical compound by oth chemical method.	study of er than	5
14G—2	200 /	560a www.gzrsc.edu.in	(Continued	

5.	(a)	What	is zv	vitterion?	1,15				3
	(b)	Draw	the	structures	of	two	arom	atic	

amino acids.

(c) Discuss the properties of peptides and proteins.

4

Salaratio OR orbania of radW

(b) Discuss the D and L isomers of galactose and glucose. 5

What is anomer?

(b) What is A, B and C in the following reaction?

H₃CO

N hv $A \longrightarrow A$ RCH_2OH B + C

OR

8. (a) How is plant-insect interaction effected by some chemicals?

14G-200/**560**a

(c)

(Turn Over)

	(b)	Discuss about defensive mechanism of insects with secretion of some chemicals.	6
9.	(a)	Discuss the enzyme catalysis with energy-profile diagram.	4
	(b)	What is Fischer hypothesis?	3
	(c)	What do you mean by enzyme active site?	3
10.	(a)	How does enzyme catalysis differ with chemical catalysis?	3
	(b)	What is allosteric enzyme?	3
	(c)	Give one example of oxidoreductase assisted synthesis.	4

* * *

VI/CHEM (xii) (b)

otedquia (b)

2014

(6th Semester)

CHEMISTRY

TWELFTH (B) PAPER

Course No.: Chem-364

(Natural Products)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Put a Tick (✓) mark against the correct answer in the brackets provided for it: 1×10=10

1. Camphor is

()

(

(d)

(

/560

1 = 0.275	1777	(2
		–

2.	Alk	aloids are	201;
	(a)	acid-like	()
	(b)	alkali-like	The state of the s
		water-like	Species in the LEWF
	(d)	amphoteric	Ourse 40, Cher-36 ()
			(Returnal Products)
3.	Chr	omophores	are
	(a)	N=O	()

		Α	100
(0)	N=N-C-O	137	1
(\mathbf{c})	N-N-C-O	(,

4. TMS is

(b)
$$(CH_3)_3Si$$
 ()

VI/CHEM (xii) (b)/560

5.	Pept	ide bond is	bacl	cbo	ne o	of				- 59.4	
	(a)	protein	()				eb.	of C		αj
	(b)	amino acid		()		•			tony	
	(c)	carbohydrat	es		()					
	(d)	all organic	comj	pou	nds		()		ke r	
6.	Mor	phine is									
	(a)	C ₁₇ H ₁₉ NF ₃		()			2.3			
	(b)	C ₁₇ H ₁₉ PO ₃		()					31172	
	(c)	C ₁₇ H ₉ NO ₃		(,,	, ; .)			haq		1 8	
	(d)	C ₁₇ H ₁₉ NO ₃	(()	- 3 -	zodí s				
7	. Pho	eromones tri	gger	s .							
	(a)	same speci	es		()				8 A5 179	
	(b)	all species		()						
	(c)	only itself		()						(0)
	(d)	None of th	e ab	ove	1	() 15-			(3)
VI/	CHEN	M (xii) (b)/ 560					•				

8.	En	zymes are		50.0	in wid		St. Dirthin		
	(a)	amino acid	ls	()		11"	oTy	
	(b)	proteins	()			Sina ora	nt a	
		carbohydra	tes	ĺ)	200			
		terpenes)	tan ba		80-179		
9.	En	zyme active	sites	are					
	(a)	not specific	c	()				
	(b)	specific	()					
	(c)	not take p	art in	react	ion	()		
	(d)	None of th	e abo	ve	() (er de He		
10.	Мо	nosaccharid	es is		, 2	rei e		000	
	(a)	glucose	()					
	(b)	fructose	() - ()		er zeta		
	(c)	galactose	()					
	(d)	All of the a	bove .	1	(3.)				(-)
I/CE	нем	(xii) (b) /560					A. 31		

www.gzrsc.edu.in

SECTION—B

(Marks: 15)

Answer the following questions:

3×5=15

1. Write in brief about biosynthesis of terpenes.

What are the classical methods used to determine the structure? How can it be used? Discuss with one example. 3. How can peptides be synthesized? What are the basic constituents used in synthesis of peptides?

VI/CHEM (xii) (b)/560

4. Discuss the rearrangement of the following compound:

5. What is enzyme? Give one example of hydrolytic enzyme.

...