2014 (6th Semester) CHEMISTRY TENTH PAPER Course No.: CHEM-362 (Inorganic Chemistry---III) Full Marks: 55 Time: 2 hours (PART : B-DESCRIPTIVE) (Marks : 35) The figures in the margin indicate full marks for the questions - 1. (a) What are the three broad classes of organometallic compound? Cite an example of each type. - (b) Describe the bonding in metal carbonyl compounds. Draw the structures of Fe₂(CO)₉ and Cr(CO)₆. 14G-200/557a (Turn Over) 3 ## OR | 2. | (a) | What is synergic bonding? Explain the fact that the CO group forms stable carbonyls with metal though it is a weak ligand. | 3 | |--|-----|--|----| | | (b) | How is lithium magnesium chloride prepared? Discuss one characteristic property and application of lithium magnesium chloride. | 4 | | 3. | (a) | | 3 | | E | (b) | What are silicones? How is (R ₃ Si)O made? Draw its structure. OR | 4 | | 4. | (a) | | =3 | | The state of s | (b) | How does an inorganic polymer differ from an organic polymer? Illustrate with suitable example. | 1 | | | (c) | How is (-PNCl ₂ -) made? Give its structure. Mention one of its application. | | 14G-200/557a (Continued) | 5. | (a) | What is lanthanide contraction? Explain the causes of lanthanide contraction. 1+2=3 | |------------|-------------|--| | | (b) | Discuss in brief the colour and absorption spectra of actinide ions. | | | | OR | | 6. | (a) | Compare the lanthanides and actinides in terms of their electronic configurations and oxidation states. 11/2+11/2=3 | | | (b) | Discuss separation of lanthanides by ion exchange method. | | 7 . | (a) | What is Curie law? Why was it modified to give Curie-Weiss law? Explain. | | | (b) | The complex [NiCl ₄] ²⁻ is paramagnetic with two unpaired electrons, while [Ni(CN) ₄] ²⁻ is diamagnetic. Explain. 4 | | 8. | (a) | [FeF ₆] ³⁻ has magnetic moment of 5.9 BM whereas [Fe(CN) ₆] ³⁺ has a value of 1.7 BM. Explain. | | 3 | (b) | Make plots of magnetic susceptibility vs. temperature in case of paramagnetic, ferromagnetic and antiferromagnetic compounds and explain the difference. (Turn Over) | | 14G- | -200 | /557a | (a) Discuss the IR spectra of metal-halogen bond. 3 (b) Discuss in brief the Raman effect. OR 10. (a) The IR spectra for trans-[Pd(NH₃)₂Cl₂] and cis-[Pd(NH₃)₂Cl₂] show the following v_(Pd-N) and v_(Pd-Cl) vibrational frequencies (in cm⁻¹): | | $v_{(Pd-N)}$ | V(Pd - Cl) | |---------------------|--------------|------------| | trans-[Pd[NH3]2Cl2] | 496 | 333 | | cis-[Pd(NH3/2Cl2] | 495; 476 | 327; 306 | Comment on the observed IR band. 3 (b) Discuss why the symmetric (v₁) stretching of carbon dioxide molecule is Raman active, whereas, the bending mode (v₂) and asymmetric stretching mode (v₃) are Raman inactive. ** The rue of ## 2014 (6th Semester) ## CHEMISTRY TENTH PAPER Course No.: CHEM-362 (Inorganic Chemistry—III) (PART : A—OBJECTIVE) (Marks : 20) The figures in the margin indicate full marks for the questions SECTION—I (Marks : 5) Put a Tick (✓) mark against the correct answer in the brackets provided for it: 1×5=5 | 1. | In | the formation | of M—CO | π -bond, | metal | atom | acts | |----|----|---------------|---------|--------------|-------|------|------| | | as | electron | | | | | | | (a) | acceptor - | (|) | |-----|------------|---|---| | | | | | - (b) donor () - (c) stabiliser () - (d) None of the above () /557 | 2. | Hemoglobin | is | found | in | |----|------------|----|-------|----| |----|------------|----|-------|----| - (a) red blood cells () - (b) brain cells () - (c) stem cells () - (d) None of the above () 3. The most common oxidation state of lanthanide is - (a) +2 () - (b) +3 () - (c) +4 () - (d) +7 () 4. The magnetic moment of [MnBr₄]²⁻ is 5.9 BM. The geometry of this complex ion is - (a) square planar (- (b) tetrahedral () - (c) octahedral () - (d) None of the above () VI/CHEM (x)/557 | 5. | Water | molecule, | $H_{2}O_{1}$ | has | the | following | normal | |----|--------------------|-----------|--------------|-----|-----|-----------|--------| | | modes of vibration | | | | | | | - (a) 1 () - (b) 2 () - (c) 3 () - (d) 4 () SECTION-II (Marks : 15) Answer the following questions: $3 \times 5 = 15$ 1. Why are CO and NO called π -acid ligand? Write the salient features of bonding involved in linear mononuclear metal carbonyl. 161 2. Write a short note on metalloenzymes of zinc. VI/CHEM (N)/557 Discuss the magnetic properties of M' (lanthanides) ions. 4. Write short notes on ferromagnetism and antiferromagnetism. Discuss the conditions required for a molecule to be IR active. +++