Subject: Chemistry

Paper name: Physical Chemistry - III

Paper No: **XI** (**T**) (**CHEM/6/CC/363**)

Semester: VI

A. Multiple Choice questions

- 1. The spectral emissive power (E) of a blackbody at any temperature is equal to
 - (a) σ T³
 - (b) σT^{-3}
 - (c) σT^4
 - (d) σ T⁻⁴
- 2. When $\Upsilon \Psi = 0$, the eigen functions are
 - (a) arbitrary
 - (b) diagonal
 - (c) orthogonal
 - (d) normalized
- 3. Wien's displacement law in case of a blackbody is given by
 - (a) $\lambda_m \times b = T$
 - (b) $\lambda_m \times T = b$
 - (c) $\lambda_m \times b = T^2$
 - (d) $\lambda_m \times b = T^{-1}$
- **4.** Rayleigh-Jeans formulae for energy density between wavelengths λ and $\lambda+d\lambda$ in case of black-body

radiation is given by

- (a) $E_{\lambda}d_{\lambda} = 8\pi kT/\lambda^2$
- (b) $E_{\lambda}d_{\lambda} = 8\pi kT/\lambda^3$
- (c) $E_{\lambda}d_{\lambda} = 8\pi kT/\lambda^4$
- (d) $E_{\lambda}d_{\lambda} = 8\pi kT/\lambda^5$
- 5. The wave function (ψ) of the particle in 1D box lies in the region = ?, where 'a' is the width of the box.

a) $x > 0$
b) $x < 0$
c) $0 < x < a$
d) $x > a$
6. The unit of molar absorption coefficient (ε) is
(a) $\text{mol}^{-1} \text{dm}^{3} \text{cm}^{-1}$
(b) $mol dm^3 cm^{-1}$
(c) mol dm ⁻³ cm
(d) $\text{mol}^{-1} \text{dm}^3 \text{cm}$
7. Absorbance (A) of a solution and transmittance (T) are related as
(a) $A = \log T$
(b) $A = -\log T$
(c) $\log A = T$
(d) $\log A = -T$
8. The free energy of a photochemical reaction
(a) is always positive
(b) is always negative
(c) can be positive and negative
(d) is neither positive nor negative
9. One Einstein is the energy associated with
(a) one molecule
(b) one photon
(c)Avogadro number of photons
(d) Faraday number of photons
10. Absorbance of a solution which absorb 90% of a certain wavelength of light beam passed
through a 1 cm cell containing 0.25 M solution is
(a) -1
(b) 1
(c) 0.08
(d) 0.01
11. Standard e.m.f. (E°) of a cell and equilibrium constant (K) are related as

Government Zirtiri Residential Science College

(a) $nFE^0 = RT lnK$
(b) $nFE^0 = KT lnR$
(c) $nFE^0 = KR lnT$
(d) $RFE^0 = nT lnK$
12. At 0K, the cell potential is equal to
(a) 0
(b) E°
(c) 1 V
(d) < E°
13. If $E = E^{\circ}$, then the equilibrium constant (K) =
(a) 1
(b) 10
(c) 100
(d) 1000
14. ΔG° is equal to
(a) nFE°
(b) $- nFE^0$
(c) nFE
(d) - nFE
15. The relationship between ΔS & emf of the cell =
(a) $- nF[dE/dT]_P^\circ$
(b) $- nF[dE/dT]_P$
(c) $nF[dE/dT]_P$
(d) $- nF [dE/dT]_P$
16. The relation between entropy 'S' of a given system and the thermodynamic probability 'W
is given by
(a) $S = k Ln W$
(b) $W = k Ln S$
(c) $k = S Ln W$
(d) $S = W Ln k$
17. The unit of partition function is

Government Zirtiri Residential Science College

(a) Joule
(b) cm ⁻¹
(c) Kelvin
(d) Dimensionless
18. The electronic partition function of H-atom in the ground electronic state is
(a) 4
(b) 2
(c) 1
(d) 3
19. The number of ways of arranging 6 different particles among three energy levels such that
each energy levels has two particles each is
(a) 30
(b) 60
(c) 90
(d) 120
20. As temperature increases, partition function
(a) Decreases
(b) Increases
(c) Remains the same
(d) None of these
21. The rotational energy change during transition $J\rightarrow J+1$, when $J=0$ is
(a) 2B cm ⁻¹
(b) 4B cm ⁻¹
(c) 6B cm ⁻¹
(d) 8B cm ⁻¹
22. In Raman spectrum when the scattered radiations have frequencies lower than the inciden
radiation, it is called
(a) Rayleigh line
(b) Stokes line
(c) Anti-stokes line
(d) None of these

23. The wave number of a transition is 2000 cm ⁻¹ . In what part of electronic spectrum does this
come?
(a) Ultraviolet
(b) Radio-wave
(c) Microwave
(d) Infrared
24. Saturated compounds containing atoms with lone pair of electrons are capable of the
transition
(a) $n \to \pi^*$
(b) $n \to \sigma^*$
(c) $\pi \to \pi^*$
(d) $\sigma \to \sigma^*$
25. The frequency of a transition is 5.4×10^{15} Hz. The corresponding wavelength is
(a) 18000 cm ⁻¹
(b) 650 nm
(c) $5.6 \times 10^{-8} \text{ m}$
(d) $5.6 \times 10^{-6} \text{ m}$
B. Fill up the Blanks
1. The total probability of finding the particle in 3D space must be
2. The square of the magnitude of the wave function, ψ^2 , of a particle is called
3. For a perfectly black body, the total emissive power or emissivity (ϵ) is given by
4. The cell potential of a Galvanic cell is aproperty.
5. For the half - cell reaction O_2 (g) + $2H_2O$ (l) + 4 e = 4 OH^- (aq), - $\Delta G^\circ/$ FE° =
6. The standard electrode potential of hydrogen electrode in neutral solution and 298 K is
7. Tthe number of microstates corresponding to its macrostate is known as its
8. At a given temperature the fraction of total number of molecules at equilibrium which possess
energy E is given by
9. According to the multiplication theories, the total partition function 'q' of a molecule is equal
to
10. Rotational spectra are shown by molecules which is having permanent
11. Raman spectroscopy deals with the of light not with its absorption.

Government Zirtiri Residential Science College

- 12. According to Born-Oppenheimer approximation, the total energy E of a molecule is given by
- 13. Photochemistry begins with the absorption of radiation in the______ of the spectrum.
- 14. Photosensitizer act as a ______in photochemical reaction.
- 15. $UO_2^{++} + hv \rightarrow UO_2^{++*}$

 $U{O_2}^{\scriptscriptstyle ++}{}^* + (COOH)_2 \rightarrow \qquad U{O_2}^{\scriptscriptstyle ++} \ + CO + \underline{\qquad} + H_2O.$

Key Answer

A. Multiple Choice questions

- 1. (c)
- 2. (c)
- 3. (b)
- 4. (c)
- 5. (c)
- 6. (a)
- 7. (b)
- 8. (c)
- 9. (c)
- 10. (b)
- 11. (a)
- 12. (b)
- 13. (a)
- 14. (b)
- 15. (c)
- 16. (a)
- 17. (d)
- 18. (b)
- 19. (c)
- 20. (b)
- 21. (a)
- 22. (b)

- 23. (d)
- 24. (b)
- 25. (c)

B. Fill up the Blanks

- 1. Unity
- 2. Probability density
- 3.
- 4. an intensive
- 5. 4
- 6. 0 volt
- 7. thermodynamic probability
- 8. boltzman distribution
- 9. $q_{tr} x q_r x q_{vib} x q_{el}$
- 10. dipole moment
- 11. scattering
- $12.\;E_{tr}+E_{r}+E_{vib}+E_{el}$
- 13. Visible and near UV
- 14. Carrier of energy
- 15. CO₂