Subject	$:$	Electronics
Paper name	$:$	Pulse Switching Circuits
Paper No	$:$	EL/IV/EC/04(T)
Semester	$:$	$\mathbf{4}^{\text {th }}$ Semester (CBCS)

A. Multiple choice questions [75 (15 from each unit)]
Q. No. 1 - 15 are from Unit 1
Q. No. 16-30 are from Unit 2
Q. No. 31-45 are from Unit 3
Q. No. $46-60$ are from Unit 4
Q. No. 61-75 are from Unit 5

1. When a negative voltage feedback is applied to an amplifier, its voltage gain \qquad
a) is increased
b) is reduced
c) remains the same
d) insufficient data
2. Closed-loop gain of a feedback amplifier is the gain obtained when
a) its output terminals are closed
b) negative feedback is applied
c) feedback loop is closed
d) feedback factor exceeds unity
3. Negative feedback is employed in
a) oscillators
b) rectifiers
c) amplifiers
d) transducers
4. The gain of an amplifier with feedback is known as
a) closed-loop gain
b) open-loop gain
c) resonant gain
d) current gain
5. When a negative voltage feedback is applied to an amplifier, its output impedance \qquad
a) is increased
b) is decreased
c) remains the same
d) insufficient data
6. The value of negative feedback fraction is always
a) less than 1
b) more than 1
c) equal to 1
d) zero
7. If the output of an amplifier is 10 V and 100 mV from the output is fed back to the input, then feedback fraction is \qquad
a) 10
b) 0.1
c) 0.01
d) 0.15
8. When voltage feedback (negative) is applied to an amplifier, its input impedance
a) is increased
b) is decreased
c) remains the same
d) insufficient data
9. An amplifier has a gain of 1000 without feedback and cut-off frequencies are $f_{1}=1.5 \mathrm{kHz}$ and $f_{2}=501.5 \mathrm{kHz}$. If 1% of output voltage of the amplifier is applied as negative feedback, the new cut-off frequencies ($f^{\prime}{ }_{1}$ and $f^{\prime}{ }_{2}$) are....
a) $f^{\prime}{ }_{1}=136.4 \mathrm{~Hz}$ and $f^{\prime}{ }_{2}=3.24 \mathrm{MHz}$
b) $f^{\prime}{ }_{1}=165.5 \mathrm{~Hz}$ and $f^{\prime}{ }_{2}=5.52 \mathrm{MHz}$
c) $f^{\prime}{ }_{l}=136.4 \mathrm{~Hz}$ and $f^{\prime}{ }_{2}=5.52 \mathrm{MHz}$
d) $f^{\prime}{ }_{1}=120.8 \mathrm{~Hz}$ and $f^{\prime}{ }_{2}=6.33 \mathrm{MHz}$
10. When negative voltage feedback is applied to an amplifier, its bandwidth \qquad
a) is increased
b) is decreased
c) remains the same
d) insufficient data
11. Feedback in an amplifier always helps to
a) increase its gain
b) decrease its input impedance
c) stabilize its gain
d) control its output
12. Negative feedback reduces distortion in an amplifier only when it. \qquad
a) comes as part of input signal
b) is part of its output
c) is generated within the amplifier
d) exceeds a certain safe level
13. An amplifier with no feedback has a gain-bandwidth product of 4 MHz . Its closed-loop gain is 40 . The new bandwidth is \qquad
a) 100 kHz
b) 160 MHz
c) 10 MHz
d) 20 kHz
14. If the feedback fraction of an amplifier is 0.01 , then voltage gain with negative voltage feedback is approximately \qquad
a) 500
b) 100
c) 1000
d) 5000
15. Feedback circuit is \qquad frequency.
a) independent of
b) strongly dependent on
c) moderately dependent on
d) less dependent on
16. An oscillator produces \qquad oscillations
a) undamped
b) damped
c) modulated
d) demodulated
17. An oscillators differs from an amplifier because it \qquad
a) has more gain
b) requires no d.c. supply
c) always has the same input
d) requires no input signal
18. For sustaining oscillation in an oscillator
a) feedback factor should be unity
b) phase shift should be 90°
c) feedback should be negative
d) no feedback
19. In a transistor Hartley oscillator
a) inductive feedback is used
b) untapped coil is used
c) entire coil is in the output circuit
d) no capacitor is used
20. If Barkhausen criterion is not fulfilled by an oscillator circuit, then it will
a) stop oscillating
b) become an amplifier
c) produce damped wave continuously
d) produce high frequency whistle
21. A Colpitts oscillator uses
a) tapped coil
b) inductive feedback
c) tapped capacitance
d) no tuned LC circuit
22. In an LC oscillator, if the value of L is increased four times, the frequency of oscillations is
................
a) increased 2 times
b) decreased 4 times
c) increased 4 times
d) decreased 2 times
23. In Colpitts oscillator, feedback is obtained \qquad
a) by magnetic induction
b) by a tickler coil
c) from the centre of split capacitors
d) from the emitter of transistor
24. Hartley oscillator is commonly used in
a) radio receivers
b) radio transmitter
c) TV receivers
d) rectifiers
25. The tuned collector oscillator circuit used in the local oscillator of a radio receiver makes use of an LC tuned circuit with $L_{l}=58.6 \mu \mathrm{H}$ and $C_{1}=300 \mathrm{pF}$. The frequency of oscillations is
a) 2599 kHz
b) 1199 kHz
c) 1533 kHz
d) 2132 kHz
26. A Colpitts oscillator having $C_{1}=0.001 \mu \mathrm{~F}, C_{2}=0.01 \mu \mathrm{~F}$ and $L=15 \mu \mathrm{H}$. The operating frequency is.
a) 1361 kHz
b) 1261 kHz
c) 1161 kHz
d) 1461 kHz
27. A Hartley oscillator having $L_{1}=1000 \mu \mathrm{H}, L_{2}=100 \mu \mathrm{H}$ and $C=20 \mathrm{pF}$. The mutual inductance between the coils, $M=20 \mu \mathrm{H}$. Then, operating frequency is. \qquad
a) 1022 kHz
b) 1032 kHz
c) 1052 kHz
d) 1010 kHz
28. In an LC oscillator, the frequency of oscillator is \qquad L or C .
a) proportional to square of
b) directly proportional to
c) independent of the values of
d) inversely proportional to square root of
29. An LC oscillator cannot be used to produce \qquad frequencies.
a) high
b) audio
c) very low
d) very high
30. An electronic oscillator is
a) just like an alternator
b) nothing but an amplifier
c) an amplifier with feedback
d) a converter of a.c. to d.c. energy
31. In a Phase-shift oscillator, the frequency determining element(s) is/are
a) L and C
b) R, L and C
c) R and C
d) only R
32. The crystal oscillator frequency is very stable due to \qquad of the crystal.
a) rigidity
b) vibrations
c) low Q
d) high Q
33. An important limitation of a crystal oscillator is
a) its low output
b) its high Q
c) less availability of quartz crystal
d) its high output
34. In a Wien-bridge oscillator, if the resistances in the positive feedback circuit are decreased, the frequency
a) remains the same
b) decreases
c) increases
d) insufficient data
35. If the crystal frequency changes with temperature, we say that crystal has \qquad temperature coefficient.
a) positive
b) zero
c) negative
d) constant
36. In RC phase-shift oscillator circuits
a) there is no need for feedback
b) feedback factor is less than unity
c) pure sine wave output is possible
d) transistor parameters determine oscillation frequency
37. Wien-bridge oscillator is most often used whenever
a) wide range of high purity sine waves are to be generated
b) high feedback ratio is needed
c) square output waves are required
d) extremely high resonant frequencies are required
38. In the Phase-shift oscillator, $R_{1}=R_{2}=R_{3}=1 \mathrm{M} \Omega$ and $C_{1}=C_{2}=C_{3}=68 \mathrm{pF}$. Frequency of oscillations is
a) 911 Hz
b) 954 Hz
c) 925 Hz
d) 935 Hz
39. \qquad is a fixed frequency oscillator.
a) Phase-shift oscillator
b) Wien-bridge oscillator
c) Negative resistance oscillator
d) Crystal oscillator
40. In the Wien-bridge oscillator, $R_{1}=R_{2}=220 \mathrm{k} \Omega$ and $C_{1}=C_{2}=250 \mathrm{pF}$. The frequency of oscillations is
a) 2892 Hz
b) 2928 Hz
c) 2982 Hz
d) 2298 Hz
41. Quartz crystal is most commonly used in crystal oscillators because \qquad
a) it is easily available
b) it has superior electrical properties
c) it is quite inexpensive
d) it occupies less space
42. A phase-shift oscillator uses 5 pF capacitors. The value of R to produce a frequency of 800 kHz is
a) $15 \mathrm{k} \Omega$
b) $17.3 \mathrm{k} \Omega$
c) $16.2 \mathrm{k} \Omega$
d) $10 \mathrm{k} \Omega$
43. A crystal has a thickness of $t \mathrm{~mm}$. If the thickness is reduced by 1%, the frequency of oscillations will
a) increase by 1%
b) decrease by 1%
c) increase by 2%
d) remains the same
44. The piezo-electric effect in a crystal is
a) a voltage developed because of mechanical stress
b) a change in resistance because of temperature
c) a change of frequency because of temperature
d) zero temperature coefficient
45. A Wien-bridge oscillator uses \qquad
a) only positive feedback
b) only negative feedback
c) both positive and negative feedback
d) no feedback is used.

46multivibrator is a square wave oscillator.
a) monostable
b) astable
c) bistable
d) none of the above
47. A monostable multivibrator has \qquad
a) no stable state
b) one stable state
c) two stable states
d) none of the above
48. In an astable multivibrator
a) $\beta=1$
b) $\beta \mathrm{A}=1$
c) $\beta>1$
d) $\beta<1$
49. The frequency of oscillation of an astable multivibrator depends on the
a) value of transistor β
b) value of collector load resistors
c) RC values of the circuit
d) width of the input pulse
50. The term "free running" is associated with
a) Bistable multivibrator
b) Monostable multivibrator
c) Astable multivibrator
d) Schmitt Trigger
51. The number of energy storing element (s) in monostable multivibrator is/are
a) two
b) one
c) three
d) no element
52. How many types of multivibrators are?
a) 2
b) 4
c) 5
d) 3
53. Bistable multivibrator is \qquad in any state.
a) Stable
b) Unstable
c) Saturated
d) Independent
54. Bistable circuit is also known as \qquad
a) Latch
b) Gate
c) Flip-flop
d) Bidirectional circuit
55. Astable circuit acts as a/an \qquad
a) Amplifier
b) Oscillator
c) Relaxation oscillator
d) Multiplexer
56. Monostable multivibrator can also be termed as \qquad
a) Full astable multivibrator
b) Half astable multivibrator
c) Half bistable multivibrator
d) Full bistable multivibrator
57. Which circuit converts irregularly shaped waveform to regular shaped waveforms?
a) Schmitt trigger
b) Voltage limiter
c) Comparator
d) None of the mentioned
58. What happens if the threshold voltages are made longer than the noise voltages in schmitt trigger?
a) All the mentioned
b) Enhance the output signal
c) Reduce the transition effect
d) Eliminate false output transition
59. The external triggering is not needed for the transition of state in the
a) Bistable multivibrator
b) Monostable multvibrator
c) Astable multivibrator
d) both (b) and (c)
60. The switching time of Astable multivibrator is $T=$ \qquad
a) 0.83 RC
b) 1.38 RC
c) 0.38 RC
d) 1.83 RC
61. After counting $0,1,10,11$, the next binary number is
a) 12
b) 100
c) 101
d) 110
62. The number $12{ }_{8}$ is equivalent to decimal
a) 12
b) 20
c) 10
d) 4
63. An XOR gate produces an output only when its two inputs are
a) high
b) low
c) different
d) same
64. The universal gate is
a) NAND gate
b) OR gate
c) NOT gate
d) AND gate
65. The inputs of a NAND gate are connected together. The resulting circuit is. \qquad
a) OR gate
b) AND gate
c) NOT gate
d) XOR gate
66. The NAND gate is AND gate followed by
a) NOT gate
b) OR gate
c) AND gate
d) NOR gate
67. When an input signal 1 is applied to a NOT gate, the output is.
a) 0
b) 1
c) either 0 or 1
d) 10
68. The number 1000_{2} is equivalent to decimal number
a) one thousand
b) eight
c) four
d) sixteen
69. Boolean algebra is essentially based on
a) symbols
b) logic
c) truth
d) numbers
70. A logic gate is an electronic circuit which
a) makes logic decisions
b) allows electron flow only in one direction
c) works on binarry algebra
d) alternates between 0 and 1 values
71. In positive logic, logic state 1 corresponds to
a) positive voltage
b) higher voltage level
c) zero voltage level
d) lower voltage level
72. An AND gate
a) implements logic addition
b) is equivalent to a series switching circuit
c) is an any-or-all gate
d) is equivalent to a parallel switching circuit
73. When an input electrical signal $\mathrm{A}=10100$ is applied to a NOT gate, its output signal is
a) 01011
b) 10101
c) 10100
d) 00101
74. A NOR gate is ON only when all its inputs are
a) ON
b) positive
c) high
d) OFF
75. In a certain 2-input logic gate, when $\mathrm{A}=0, \mathrm{~B}=0$, then $\mathrm{C}=1$ and when $\mathrm{A}=0, \mathrm{~B}=1$, then again $\mathrm{C}=1$. It must be gate.
a) XOR
b) AND
c) NAND
d) NOR

B. Fill up the blanks [15 (5 from each unit)]

Q. No. 1 - 5 are from Unit 1
Q. No. $6-10$ are from Unit 2
Q. No. 11-15 are from Unit 3
Q. No. 16-20 are from Unit 3
Q. No. 21-25 are from Unit 3

1. Feedback does not change the gain bandwidth
2. Negative feedback in amplifiers gives reduced gain but \qquad bandwidth.
3. Positive feedback occurs when feedback voltage and input voltage are in \qquad with each other.
4. Positive feedback is often used in \qquad circuits.
5. Negative feedback is frequently used in \qquad circuits.
6. An oscillator circuit must satisfy \qquad
7. Oscillators are used to produce high-frequency \qquad waves for radio transmission.
8. In \qquad oscillator, one part of the tapped capacitor is in the output circuit and the other in the input circuit.
9. Hartley oscillator uses \qquad feedback.
10. \qquad feedback is used in Colpitts oscillator.
11. Conversion of mechanical stress into electric potential by a crystal is called \qquad
12. Phase-shift oscillator do not use \qquad circuits.
13. Wien-bridge oscillator produces an exceedingly good output.
14. Y-cut quartz crystals have \qquad temperature coefficient.
15. Phase-shift oscillators are well-suited for comparatively \qquad frequencies.
16. In a multivibrator, we have \qquad feedback.
17. The multivibrator which generates square wave of its own is the \qquad Multivibrator.
18. A bistable multivibrator has \qquad stable states
19. The Schmitt trigger is often called a \qquad Circuit.
20. The Schmitt trigger is frequently used as a pulse height \qquad
21. The inverter is \qquad gate
22. The binary system uses powers of \qquad for positional values.
23. The digital systems usually operate on system.
24. In Boolean algebra, the plus sign (+) indicates \qquad operation.
25. The binary addition $1+1+1$ gives \qquad

Key Answers

A. Multiple choice questions :

1. b)
2. c)
3. c)
4. a)
5. b)
6. a)
7. c)
8. a)
9. c)
10. a)
11. d)
12. c)
13. a)
14. b)
15. a)
16. a)
17. d)
18. a)
19. a)
20. a)
21. c)
22. d)
23. c)
24. a)
25. b)
26. a)
27. c)
28. d)
29. c)
30. c)
31. c)
32. d)
33. a)
34. c)
35. a)
36. c)
37. a)
38. b)
39. d)
40. a)
41. b)
42. c)
43. a)
44. a)
45. c)
46. b)
47. a)
48. c)
49. c)
50. b)
51. d)
52. a)
53. c)
54. c)
55. b)
56. a)
57. d)
58. c)
59. b)
60. b)
61. c)
62. c)
63. a)
64. c)
65. a)
66. a)
67. b)
68. b)
69. a)
70. b)
71. b)
72. a)
73. d)
74. c)

B. Fill up the blanks :

1. product
2. increased
3. phase
4. oscillator
5. amplifier
6. barkhausen criterion
7. undamped
8. Colpitts
9. inductive
10. capacitive
11. piezo-electric effect
12. tuned
13. sine wave
14. positive
15. low
16. positive
17. astable
18. two
19. Squaring or squarer
20. Discriminator
21. NOT
22. 2
23. binary
24. OR
25. 11
