Student's Copy

2019 (CBCS) (2nd Semester) **ELECTRONICS** SECOND PAPER (Semiconductor Physics) Full Marks: 75 Time: 3 hours (PART : A—OBJECTIVE) (Marks: 25) The figures in the margin indicate full marks for the questions SECTION—A (*Marks*: 10) Tick (✓) the correct answer in the brackets provided : $1 \times 10 = 10$ **1.** The leakage current across a p-n junction is due to (a) minority carriers (b) majority carriers (c) junction capacitance) (d) impurity ()

2.		a semicor ds is abo		or, tl	ne (energy	gap	between	valence	and	conduction	
	(a)	15 eV	()								
	(b)	10 eV	()								
	(c)	5 eV	()								
	(d)	1 eV	()								
3.	The	primary	funct	ion o	fа	filter i	s to					
	(a)	minimize	a.c.	input	va	riation	.S	()				
	(b)	suppress	odd	harm	ioni	cs in 1	the re	ectifier ou	tput	()	
	(c)	stabilize	d.c. l	evel (of tl	he out	put v	oltage	()			
	(d)	remove r	ipple	s fron	n th	ne rect	ified	output	()			
4.		ideal crys vard biase		diode	is	one w	hich	behaves	as a per	rfect	when	
	(a)	conducto	r	()							
	(b)	insulator		()							
	(c)	resistanc	e ma	terial		()					
	(d)	capacitar	nce m	ateria	al	()					
EL/I	I/EC	/03 /542					2				[<i>Co</i>	ntd.

5.	Zen	er diodes are used primarily as
	(a)	amplifiers ()
	(b)	voltage regulators ()
	(c)	rectifiers ()
	(d)	oscillators ()
6.	The	e device associated with voltage-controlled capacitance is
	(a)	LED ()
	(b)	photodiode ()
	(c)	varactor diode ()
	(d)	zener diode ()
7.	In a	a <i>p-n-p</i> transistor, the current carriers are
	(a)	acceptor ions ()
	(b)	donor ions ()
	(c)	free electrons ()
	(d)	holes ()
ci./i	I/EC	/03 /542 3

8.	The	e element that has the biggest size in a transistor is	
	(a)	collector ()	
	(b)	base ()	
	(c)	emitter ()	
	(d)	collector-base junction ()	
9.	The call	e lower and upper cut-off frequencies of transistor amplifier are ale	SO
	(a)	sideband frequencies ()	
	(b)	resonant frequencies ()	
	(c)	half-resonant frequencies ()	
	(d)	half-power frequencies ()	
10.	The	e d.c. load line of a transistor circuit	
	(a)	has a negative slope ()	
	(b)	is a curved line ()	
	(c)	gives graphic relation between I_C and I_B ()	
	(d)	does not contain the Q-point ()	
EL/I	I/EC	/03 /542 4	[Contd.

SECTION—B

(*Marks* : 15)

Answer the following questions:

 $3 \times 5 = 15$

1. What do you mean by a hole in a semiconductor? Discuss the formation of hole current.

OR

Explain the capacitive effects of junction capacitance.

2. What are the important electrical properties of a capacitor and an inductor in making a filter circuit?

OR

Compare half-wave and full-wave bridge rectifiers.

3. Explain the working of a Zener diode as peak clipper.

OR

Describe the construction of thermistor.

4. What is thermal runaway? How will you avoid this in a transistor?

OR

A transistor has 0 98, I_B 100 A and I_{CO} 6 A. Calculate I_C and I_E .

5. Explain frequency response curve and bandwidth of an amplifier with necessary diagram.

OR

Explain how a transistor acts as an amplifier.

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

1.	(a)	Discuss the behaviour of a p - n junction under forward and reverse biasing.	2=4					
	(b)	Explain the salient features of Bohr's atomic model.	4					
	(c)	Which are the most commonly used semiconductors and why?	2					
		OR						
2.	(a)	What is a p - n junction? Explain the formation of potential barrier in a p - n junction. 1+2	2=3					
	(b)	What are intrinsic and extrinsic semiconductors? How is <i>p</i> -type of extrinsic semiconductors formed? 2+2	2=4					
	(c)	Give the energy band description of conductors, semiconductors and insulators.	3					
3.	(a)	Explain with a diagram, how semiconductor diode can be used as a full-wave rectifier. Show that its maximum efficiency is 81·2%. 2+3	3=5					
	(b)	What do you understand by d.c. and a.c. resistances of a semiconductor diode?	2					
	(c)	Describe the filtering action of a capacitor filter.	3					
	OR							
4.	(a)	Show that the value of ripple factor for half-wave rectifier is 1.21.	2					
	(b)	Explain approximate equivalent circuit of semiconductor diode.	2					
	(c)	Describe the filtering action of -filter.	3					
EL/I	I/EC	C/03 /542 6 [Co	ntd.					

	(d)	A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at 20 . The transformer r.m.s. secondary voltage from centre tap to each end of secondary is 50 V and load resistance is 980 . Find—(i) the mean load current and (ii) the r.m.s. value of load current.	3
5.	(a)	Explain the operation and characteristics of a photodiode. 2+2=	:4
	(b)	Describe the operation and applications of Schottky diode.	3
	(c)	Explain the working of a tunnel diode oscillator.	3
		OR	
6.	(a)	Describe the operation and diode resistance of a PIN diode.	3
	(b)	Explain any three applications of varactor diode.	3
	(c)	What is tunnelling effect? Explain the <i>V-I</i> characteristics of tunnel diode. 1+3=	:4
7.	(a)	With diagram, discuss the working of <i>n-p-n</i> transistor.	3
	(b)	Define and of a transistor. Show the relation $\frac{1}{1}$, where the	
		symbols have their usual meanings. 2+3=	5
	(c)	What is meant by transistor biasing? What are the important biasing rules?	2
		OR	
8.	(a)	Explain with diagram, the input and output characteristics of CE configuration in an n - p - n transistor.	5
	(b)	With diagram, explain the three primary currents which flow in a properly-biased p - n - p transistor.	3
	(c)	In CB connection, 0 9. If the emitter current is 1 mA, determine the value of base current.	2
EL/I	I/EC	2/03 /542	d.

9. (a) Explain the terms input resistance, output resistance, current gain, voltage gain and power gain of a transistor amplifier.

5

(b) For a single-stage transistor amplifier, the collector load is R_C 2 k and the input resistance R_i 1 k . If the current gain is 50, calculate the voltage gain of the amplifier.

2

(c) Using the output characteristics along with the d.c. load line of CE transistor circuit, explain the terms cut-off, saturation and active region.

3

OR

10. (a) Describe class–A, class–B, class–C and class–AB amplifiers.

4

2

(b) A change of 200 mV in base-emitter voltage causes a change of 100 A in the base current. Find the input resistance of the transistor.

How will you draw d.c. load line on the output characteristics of a transistor? What is its importance? 2+2=4

* * *