FIRST PAPER
(Electronic Measuring Instruments and Circuit Analysis)

$$
\begin{gathered}
\text { (PART : A - OBJECTIVE) } \\
\text { (Marks : 20) } \\
\text { Answer all questions } \\
\\
\text { SECTION - I } \\
\text { (Marks : 5) } \\
\text { Each question carries } 1 \text { mark }
\end{gathered}
$$

Tick $(\sqrt{ })$ the correct answer in the brackets provided:

1. Which of the following would be used as filter capacitor for 1000 V power supply?
(a) Paper capacitor
()
(b) Air capacitor
()
(c) Mica capacitor
()
(d) Electrolytic capacitor
()

www.gzrsc.edu.in

2. If a multimeter which has a sensitivity of 1000Ω per volt reads 50 V full-scale, its internal resistance is

(a) $20 \mathrm{k} \Omega$	(\quad)
(b) $50 \mathrm{k} \Omega$	(\quad)
(c) $10 \mathrm{k} \Omega$	(\quad)
(d) $100 \mathrm{k} \Omega$	(\quad)

3. In which part of L-C-R circuit, dissipation of energy occurs?
(a) Capacitor
()
(b) Resistor
(c) Inductor
()
(d) All three above
()
4. Which factor makes the resistor, capacitor or inductor a non-linear element?
(a) Variation in pressure
(b) Variation in temperature
(c) Variation in density of the substance
(d) Constituents of the substance

$($	$)$
$($	$)$
$($	$)$
$($	$)$

5. The Norton resistance of network is 20Ω and the shorted-load current is 2 A. If the network is loaded by a resistance equal to 20Ω, the current through the load is
(a) 20 A
(b) 0.5 A
(c) 4 A
(d) 1 A

SECTION - II

(Marks : 15)
Each question carries 3 marks

1. How is coefficient of coupling related to mutual and self-inductance of two coils? What is its significance?
2. Explain the working principle of Cathode-Ray-Oscilloscope (CRO).
3. Derive the relation between current and voltage in an a.c. circuit having inductance L and capacitance C in series.

www.gzrsc.edu.in

4. State and explain Kirchhoff's current and voltage law.
5. Using Norton's theorem, calculate the current flowing through the 12Ω resistor in the figure given below:

www.gzrsc.edu.in

FIRST PAPER
(Electronic Measuring Instruments and Circuit Analysis)
Full Marks : 55
Time : 3 hours
(PART : B - DESCRIPTIVE)
(Marks : 35)
The figures in the margin indicate full marks for the questions
UNIT - I

1. (a) Define coupled circuits and coefficient of coupling.
(b) Show that the effective impedance of the primary circuit is modified, when it is coupled inductively with a secondary circuit. 5

Or
(a) Describe the construction of ceramic capacitor. Why is ceramic capacitor preferred over mica or paper capacitor?
(b) Compare air-core, iron-core and ferrite-core inductors.
UNIT - II
2. (a) Explain the theory of transformer and discuss its working. Describe the various losses occurring in transformers.
(b) Explain the uses of transformer losses with special reference in long distance power transmission.
(a) What is multimeter? Define the sensitivity of a multimeter.
$1+1$
(b) Explain with circuit diagram, the working of multimeter as voltmeter and ammeter.

UNIT - III

3. Explain the method of solving a.c. problems using complex number notations. Investigate such a technique in the behavior of L-C-R series circuit.

Or

(a) What is j-operator? Briefly explain the significance of j-operator.
(b) Define filter of a circuit. Explain band-pass and band-stop filters.

UNIT - IV

4. (a) Explain nodal analysis and matrices of circuit analysis of a network.
$21 / 2+21 / 2$
(b) What do you mean by active and passive elements?

$$
O r
$$

(a) State and explain ladder method of network analysis.
(b) How will you convert a voltage source into a current source?

UNIT - V
5. (a) State and explain the Norton's theorem.
(b) Show that the Norton's equivalent circuit can be found from the Thevenin's equivalent circuit.

Or
(a) State maximum power transfer theorem and give its applications.
(b) Explain the reciprocity theorem.

