$\mathbf{V} /$ PHY (viii) (A) (PR)

2016

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Spectroscopy)

(Pre-Revised)
Full Marks : 55
Time : $2^{1 ⁄ 2}$ hours
(PART : B—DESCRIPTIVE)

$$
\text { (Marks : } 35 \text {) }
$$

The figures in the margin indicate full marks for the questions

1. Derive the formula for Rutherford's scattering cross-section, and discuss the drawback of the Rutherford's model of the atom. 4+3=7

Or

Discuss the principle and the experimental arrangement of Stern-Gerlach experiment, and explain its significance.

(3)

radiation associated with the transition $j=3$
to $j=4$ is $83.03 \mathrm{~cm}^{-1}$. $5+2=7$

Given,

$$
\begin{aligned}
& h=6 \cdot 62 \times 10^{-27} \mathrm{erg} \mathrm{sec}^{2} \\
& c=3 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}
\end{aligned}
$$

5. Explain the sequence and progression in electronic spectra, and hence derive the frequency of the spectrum due to a change in total energy of the molecule.

Or
(a) Define the P, Q and R branches in the spectrum of rotational fine structure in electronic vibrational transition.
(b) What is Fortrat diagram? Mention the information observed in the Fortrat diagram.

Subject Code :

$\mathbf{V} /$ PHY (viii) (A) (PR)

To be filled in by the Candidate

DEGREE 5th Semester
(Arts / Science / Commerce /) Exam., 2016

Subject
Paper

INSTRUCTIONS TO CANDIDATES

1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.
2. This paper should be ANSWERED FIRST and submitted within 45 minutes of the commencement of the Examination.
3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

Booklet No. A

Date Stamp
\qquad

To be filled in by the

 CandidateDEGREE 5th Semester
(Arts / Science / Commerce /
) Exam., 2016
Roll No.
Regn. No.

Subject \qquad
Paper \qquad

Descriptive Type
Booklet No. B \qquad

Signature of Invigilator(s)

$\mathbf{V} /$ PHY (viii) (A) (PR)

2016

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Spectroscopy)

(Pre-Revised)
(PART : A—OBJECTIVE)
(Marks: 20)
The figures in the margin indicate full marks for the questions
SECTION-I
(Marks: 5)
Put a Tick (\checkmark) mark against the correct answer in the brackets provided:

1. According to Bohr's postulate, an electron of mass m moving in a circular path of radius r with velocity v will satisfy the relation
(a) $\frac{m v}{r}=\frac{n h}{2 \pi} \quad(\quad)$
(b) $\frac{m v}{r}=\frac{2 \pi}{n h}$ ()
(c) $m u r=\frac{2 \pi}{n h} \quad$ ()
(d) $m u r=\frac{n h}{2 \pi} \quad$ ()
where $n=1,2,3, \ldots$ is called the principal quantum number.

(2)

2. The Auger effect is also called
(a) radiationless transition
(b) positron transition ()
(c) radiation transition ()
(d) electron transition
3. A LASER action is based on the amplification of
(a) atomic vibration
(b) electromagnetic vibration ()
(c) molecular interaction
(d) electromagnetic oscillation

(3)

4. The zero-point energy of a vibrating diatomic molecule is
(a) $\frac{1}{4} h \omega_{\mathrm{os}}$ joule ()
(b) $\frac{1}{2} h \omega_{\mathrm{os}}$ joule ()
(c) $h \omega_{\text {os }}$ joule ()
(d) $2 h \omega_{\text {os }}$ joule ()
here, $\omega_{\text {os }}$ is oscillating frequency.
5. Raman spectra is appeared due to the scattering of radiation by the
(a) dipole moment of molecules ()
(b) rotating molecules ()
(c) vibrating molecules ()
(d) absorption of molecules ()

(4)

SECTION-II

(Marks: 15)
Give very short answers of the following questions : $\quad 3 \times 5=15$

1. The wavelength of the Balmer series in hydrogen is 3646 Å. Calculate Rydberg constant in cm^{-1}.

(5)

2. What is Paschen-Back effect?

(6)

3. Explain the population inversion in LASER action.

(7)

4. Explain the general idea of Born-Oppenheimer approximation.

(8)

5. What do you understand by band origin and band head in the rotational fine structure of electronic vibration spectra of the molecule?
