Subject	:	Mathematics
Paper name	:	Advanced Calculus
Paper No	:	MAT 362
Semester	:	6 th semester

A. Multiple choice questions [25 (5 from each unit)]

1. The Upper Darbaux sums of a function *f* corresponding to the partition *P* of interval [a,b] is given by the relation]

a)
$$L(P, f) = \sum_{i=2}^{n} m_i \Delta x_i$$

b) $L(P, f) = \sum_{i=2}^{n} M_i \Delta x_i$
c) $U(P, f) = \sum_{i=2}^{n} m_i \Delta x_i$
d) $U(P, f) = \sum_{i=2}^{n} M_i \Delta x_i$

2. The Lower Riemann integral for a function f corresponding to the partition P of interval is given by the relation

a) sup
$$L(P, f) = \int_{a}^{b} f dx$$

b) $L(P, f) = \sup \int_{a}^{\overline{b}} f dx$
c) $L(P, f) = \inf \int_{a}^{b} f dx$
d) sup $U(P, f) = \int_{a}^{b} f dx$

- 3. Let P^* be a refinement of a partition P, then for a bounded function fa) $L(P^*, f) \le L(P, f)$ b) $L(P^*, f) \ge L(P, f)$ c) $U(P^*, f) \ge L(P, f)$ d) $U(P^*, f) \le U(P, f)$
- 4. For any two partitions P_1 , P_2 of a bounded function f
 - a) $L(P_1, f) \le U(P_2, f)$ b) $L(P_1, f) < U(P_2, f)$ c) $L(P_2, f) \le U(P_1, f)$ d) $U(P_2, f) \le L(P_1, f)$

5. If a bounded function f is integrable on [a,b], then

a)
$$\lim_{\mu(P)\to\infty} S(P,f) = \int_{a}^{b} f \, dx$$

b)
$$\lim_{\mu(P)\to0} S(P,f) = \int_{a}^{b} f \, dx$$

c)
$$\int_{a}^{b} f \, dx = \int_{a}^{b} f \, dx$$

d) L(P, f) = U(P, f) = S(P, f)where L(P, f), U(P, f) and S(P, f) are the lower Darboux, upper Darboux and Riemann sum of f corresponding to a partition P of [a,b] with norm $\mu(P)$.

- 6. If f and g be two positive functions such that $f(x) \le g(x) \ \forall \in [a,b]$, then
 - a) $\int_{a}^{b} g \, dx$ converges if $\int_{a}^{b} f \, dx$ converges **b**) $\int_{a}^{b} f \, dx$ converges if $\int_{a}^{b} g \, dx$ converges **c**) $\int_{a}^{b} f \, dx$ diverges if $\int_{a}^{b} g \, dx$ diverges **d**) $\int_{a}^{b} f \, dx$ and $\int_{a}^{b} g \, dx$ behaves alike

7. The improper integral
$$\int_{a}^{\infty} \frac{dx}{x^{n}}$$
, a > 0 converges if and only if

- a) *n* ≤1
- b) *n* < 1
- **c)** n > 1
- d) *n*≥1

8. The improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ converges if and only if a) $n \le 1$ b) n < 1

- c) n > 1
- d) *n*≥1
- 9. If f and g be two positive functions on [a,b] such that

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = l, \text{ a non-zero finite number , then}$$

a) $\int_a^b g \, dx$ converges if $\int_a^b f \, dx$ converges
b) $\int_a^b f \, dx$ converges if $\int_a^b g \, dx$ converges

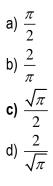
Downloaded from www.gzrsc.edu.in

- c) $\int_{a}^{b} f \, dx$ diverges if $\int_{a}^{b} g \, dx$ diverges d) $\int_{a}^{b} f \, dx$ and $\int_{a}^{b} g \, dx$ behaves alike
- 10. Which of the following definite integral is an improper integral?

a)
$$\int_{0}^{\frac{\pi}{2}} \sin x dx$$

b) $\int_{-1}^{1} \frac{dx}{1+x^{2}}$
c) $\int_{0}^{4} \frac{dx}{(x-2)(x-3)}$
d) $\int_{0}^{1} \frac{dx}{x(1+x)}$

- 11. Uniformly convergent improper integral of a continuous function is
 - a) not continuous
 - **b)** itself continuous
 - c) may be continuous
 - d) differentiable
- 12. The value of the improper integral $\int_{a}^{\infty} e^{-x^2} dx$ is equal to



13. The value of the improper integral $\int_{0}^{\infty} e^{-x^{2}} \cos \alpha x \, dx$ is equal to

a)
$$\frac{\sqrt{\pi}}{2}$$

b) $\frac{\sqrt{\pi}}{2}e^{-\frac{\alpha}{4}}$

c)
$$\frac{\sqrt{\pi}}{2}e^{-\frac{\alpha^2}{4}}$$

d) $\frac{\pi}{\sqrt{2}}e^{-\frac{\alpha^2}{4}}$

14. The improper integral $\int_{0}^{\infty} x^{n-1} e^{-x} dx$ is convergent if and only if

- a) *n* ≤1
- b) n < 1
- c) n > 1
- **d**) n > 0

15. The value of the improper integral $\int_{0}^{\pi} \frac{dx}{a+b\cos x}$ if *a* is positive and |b| < a is

a)
$$\frac{2\pi}{(a^2 - b^2)^{\frac{1}{2}}}$$

b)
$$\frac{2\pi}{(a^2 - b^2)^{\frac{1}{2}}}$$

c)
$$\frac{\pi}{(a^2 - b^2)^{\frac{1}{2}}}$$

d)
$$\frac{\pi}{(a^2 - b^2)^{\frac{3}{2}}}$$

16. The value of the double integral $\int_{\frac{1}{2}}^{1} \int_{\frac{1}{2}}^{1} \frac{x-y}{x+y} dx dy$ is

a) 0 b) $-\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{\pi}{2}$

17. The value of the integral $\int_{C} x^2 dx + xy dy$ taken along the line segment from (1,0) to (0,1) is

a) 0 b) $-\frac{1}{6}$ c) 1

Downloaded from www.gzrsc.edu.in

d) $\frac{1}{6}$

18. The value of the integral $\int xy \, dx$ along the arc of the parabola $x = y^2$ from (1, -1) to (1, 1) is a) 0

- b) $\frac{2}{5}$ c) $\frac{4}{5}$ d) $\frac{5}{4}$

19. The value of the double integral $\iint x^2 y^3 dx dy$ over the circle $x^2 + y^2 = a^2$ is

- **a)** 0
- b) $-\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{\pi}{2}$

20. The value of the integral $\int_{C} \frac{dx}{x+y}$ where C is the curve $x = at^2$, y = 2at, $0 \le t \le 2$ is

- a) $\frac{1}{6}$ **b**) log 4 c) $-\frac{1}{6}$
- d) log 2

21. By M_n -test, the sequence $\{f_n\}$ converges uniformly to f on [a,b] if and only if

- a) $M_n \rightarrow 0$ as $n \rightarrow 0$
- b) $M_n \to \infty$ as $n \to 0$
- c) $M_n = \inf\{|f_n(x) f(x)| : x \in [a,b]\}$
- **d**) $M_n \to 0$ as $n \to \infty$
- 22. With regards to uniform and point-wise convergence of sequences in [a,b], which of the following is/are true?

a) point-wise convergence \Rightarrow uniform convergence

b) uniform convergence \Rightarrow point-wise convergence

Downloaded from www.gzrsc.edu.in

- **c)** uniform limit = point-wise limit
- d) none of the above
- 23. The sequence of function given by $f_n(x) = \frac{n}{x+n}$ is
 - a) uniformly convergent in [0, k], whatever k may be
 - b) onlypointwise convergent in [0, k], whatever k may be
 - c) not convergent at all in [0, k], whatever k may be
 - d) uniformly convergent in $[0,\infty)$
- 24. The sequence of function given by $f_n(x) = \frac{nx}{1 + n^2 x^2}$ is
 - a) uniformly convergent in any interval containing zero
 - **b)** notuniformly convergent in any interval containing zero
 - c) pointwise convergent with pointwise limit 1
 - d) none of the above
- 25. The sequence of function $f_n(x) = nxe^{-nx^2}$ is point-wise, but not uniformly convergent on
 - a) [0, k], where k< 1
 - b) [0,∞]
 - $\textbf{C} \big) [0,\infty)$
 - d) $(0,\infty)$

B. Fill up the blanks [15 (3 from each unit)] **Unit I**

- 1. The function defined by $f(x) = \begin{cases} 0, \text{ when } x \text{ is rational} \\ 1, \text{ when } x \text{ is irrational} \end{cases}$ is not _____ on any interval.
- 2. If f_1 and f_2 are two bounded and integrable functions on [a,b], then _____ is also integrable on[a,b].
- 3. Every continuous and constant function is _____

Unit 2

- 4. The improper integral (beta function) $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists if and only if *m*,*n* are both _____.
- 5. By Frulanni's integral, if ϕ is continuous in $[0,\infty)$ and $\lim_{x\to 0} \phi(x) = \phi_0$ then we have

$$\int_{0}^{\infty} \frac{\phi(ax) - \phi(bx)}{x} dx = (\phi_0 - \phi_1) \log\left(\frac{b}{a}\right).$$

6. Every ______ integral is convergent.

Unit 3

7. Let
$$\phi(y) = \int_{a}^{b} f(x, y) dx$$
, if $f(x, y)$ is continuous and f_{y} also exists in [a,b;c,d], then ϕ is

- 8. The convergent improper integral $\int_{0}^{\infty} e^{-x^{2}} \cos yx \, dx$ in $(-\infty, \infty)$ is _____
- 9. Let f(x, y) be a continuous function of two variable with rectangle $[a,b;c,d] \subseteq R^2$, then the function defined $\phi(y) = \int_a^b f(x, y) dx$ by is _____ in [c,d].

Unit 4

- 10. The value of the double integral $\iint \frac{x-y}{x+y} dx dy$ over $\left[\frac{1}{2}, 1; \frac{1}{2}, 1\right]$ is _____.
- 11. The value of $\int_C 4x^3 ds$ where C is the line segment from (-2,-1) to (1, 2) is _____
- 12. A domain E will is said to be regular or quadratic with respect to y-axis, if it is _____ by curves of the form $y = \phi(x)$, $y = \phi(x)$; x = a, x = b where ϕ and ϕ are continuous and $\phi(x) < \phi(x) \quad \forall x \in [a, b]$

Unit 5

- 13. The sequence $f_n(x) = x^n$ is uniformly convergent on [0, k] where k is a number less than
- 14. If a sequence $\{f_n\}$ converges uniformly to f on $x \in [a,b]$ and let f_n be integrable $\forall n$, then f is integrable and $\lim_{n \to \infty} \int_a^x f_n(x) dx =$ _____.
- 15. The sequence $\{f_n\}$ of continuous function is uniformly convergent on [a,b] to a function *f*. Then *f* is also _____

Key Answers

A. Multiple choice questions [replace x]

1. d)	2. a)	3. d)	4. a)	5. b)	6. b)	7. c)
8. b)	9. d)	10. c)	11. b)	12. c)	13. c)	14. d)
15. c)	16. a)	17. b)	18. c)	19. a)	20. b)	21. d)
22. b)	23. a)	24. b)	25. c)			

- B. Fill up the blanks [replace x]
- 1. integrable
- 2. $f_1 + f_2$

- 3. Riemann integrable
- 4. positive
- 5. $\lim_{x \to \infty} \phi(x) = \phi_1$
- 6. absolutely convergent
- 7. derivable
- 8. uniformly convergent
- 9. continuous
- 10. 0
- 11. $-15\sqrt{2}$
- 12. bounded
- 13. 1
- 14. $\int_{a}^{x} f(x) dx$
- 15. continuous