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Answer one question from each Unit

UNIT—I

1. (a) Prove that, if H is a normal subgroup of

a group G and K  is a normal subgroup

of G containing H, then

G K G H K H/ ( / )/( / )@ 8

(b) Show that every subgroup of an Abelian

group is normal. 2
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2. (a) If f  is a homomorphism of a group G

into a group ¢G  with kernel K , then

prove that K  is a normal subgroup of G. 5

(b) Prove that for an Abelian group the only

inner automorphism is the identity

mapping whereas for a non-Abelian

group there exists non-trivial auto-

morphisms. 5

UNIT—II

3. (a) Prove that every finite integral domain is 

a field. 7

(b) Prove that a skew field has no divisor of

zero. 3

4. (a) Prove that a commutative ring with

unity is a field, if it has no proper ideal. 4

(b) Prove that an ideal S of the ring of

integers I is maximal if and only if S is

generated by some prime integers. 6

UNIT—III

5. (a) Show that every field is a Euclidean

ring. 6

(b) Find all the units of the integral domain

of Gaussian integers. 4
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6. (a) If a is a prime element of a unique

factorization domain R and b, c are the

elements of R, then prove that

a bc a b| |Þ  or a c| 5

(b) Let R be a Euclidean ring and a, b be two 

non-zero elements in R, then prove that, 

if b is not a unit in R, d ab d a( ) ( )> . 5

UNIT—IV

7. (a) Define basis of a finite dimensional

vector space.

Let V  is a finite dimensional vector

space over the field F . Then show that

any two bases of V  have the same

number of elements. 2+5=7

(b) Prove that if two vectors are linearly

dependent, then one of them is a scalar

multiple of the other. 3

8. (a) Prove that two finite dimensional vector

spaces over the same field are

isomorphic if and only if they are of the

same dimension. 6

(b) In V R3 ( ), where R is the field of real

numbers, show that the set of vectors

{( , , ), ( , , ), ( , , )}1 2 0 0 3 1 1 0 1-

are linearly independent. 4
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UNIT—V

9. (a) Show that two similar matrices A and B

have the same characteristic polynomial 

and hence the same eigenvalues.

1½+1½=3

(b) Find the matrix representation of linear

map T R R: 3 3®  given by

T x y z z y z x y z( , , ) ( , , )= + + +

relative to the basis

[( , , ), ( , , ), ( , , )]1 0 1 1 2 1 2 1 1- 7

10. (a) Prove that an n n´  matrix A over the

field F  is diagonalizable if and only if A

has n linearly independent eigenvectors. 5

(b) Diagonalize the matrix

A =

-

-

-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 3 3

3 5 3

6 6 4 5

H H H
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2 0 1 7

( 6th Semester )

MATHEMATICS

Paper : MATH–361

( Modern Algebra )

( PART : A—OBJECTIVE )

( Marks : 25 )

Answer all questions

SECTION—A

( Marks : 10 )

Each question carries 1 mark

Put a Tick (3) mark against the correct answer in the brackets

provided :

1. If a and b be two elements of a group G, then b is

conjugate to a if

(a) b x a x x G= Î-1 ;    (  )

(b) b a xa x G= Î-1 ;    (  )

(c) b a xa x G= Î-1 ;   (  )

(d) b xa x x G= Î-1 ;    (  )
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2. Which of the following statements is false?

(a) The centre Z  of a group G is a normal subgroup

of G.   (  )

(b) The intersection of any two normal subgroups of a

group is a normal subgroup.  (  )

(c) A subgroup H  of a group G is normal if and only if 

x Hx H- =1 .   (  )

(d) A subgroup H  of a group G is a normal subgroup of G

if and only if xH Hx x G= " Î, .    (  )

3. In the ring of integers I , the maximal ideal is

(a) 12   (  )

(b) 5   (  )

(c) 9   (  )

(d) 15   (  )

4. The necessary and sufficient conditions for a non-empty

subset K  of a field F  to be a subfield of F  are

(a) a K b K a b KÎ Î Þ + Î,  and ab K- Î1    (  )

(b) a K b K a b KÎ Î Þ + Î,  and ab KÎ    (  )

(c) a K b K a b KÎ Î Þ - Î,  and ab K- Î1    (  )

(d) a K b K a b KÎ Î Þ - Î,  and a b K- Î1    (  )

( 2 )
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5. The associates of a non-zero element a ib+  of the ring of

Gaussian integers D a ib a b I= + Î{ , , } are

(a) a ib a ib a ib a ib+ - - + - -, , ,    (  )

(b) a ib a ib b ia b ia+ - - + -, , ,    (  )

(c) a ib a ib b ia b ia+ - - - - -, , ,    (  )

(d) a ib a ib b ia b ia+ - - - + -, , ,    (  )

6. Let a and b be two non-zero elements in a Euclidean ring 

R. Then, if b is a unit in R,

(a) d ab d a( ) ( )>    (  )

(b) d ab d a( ) ( )=    (  )

(c) d a d ab( ) ( )>    (  )

(d) d a d ab( ) ( )<    (  )

7. Which of the following sets of vectors is linearly

independent in V R3( ) ?

(a) {( , , ), ( , , ), ( , , )}1 2 0 0 3 1 1 0 1-    (  )

(b) {( , , ), ( , , )}2 1 2 8 4 8    (  )

(c) {( , , ), ( , , ), ( , , )}- - -1 2 1 3 0 1 5 4 3    (  )

(d) {( , , ), ( , , ), ( , , )}1 2 1 3 1 5 3 4 7-    (  )

( 3 )

MATH/VI/09/424



8. Which of the following statements is false?

(a) Every superset of a linearly dependent set of vectors

is linearly dependent.   (  )

(b) There exists a basis for each finite dimensional vector 

space.   (  )

(c) A system consisting of a single non-zero vector is

always linearly independent.   (  )

(d) Every linearly dependent subset of a finitely

generated vector space V F( ) forms a part of a basis

of V.   (  )

9. The eigenvalues of a real skew symmetrix matrix are

(a) purely imaginary   (  )

(b) all zero   (  )

(c) purely imaginary or zero   (  )

(d) all real   (  )

10. Let T R R: 3 2®  is a linear mapping of the matrix

1 1 2

2 3 1

é

ë
ê

ù

û
ú

relative to the basis {( , ), ( , )}1 1 0 1  of R2 and

{ ( , , ), ( , , ), ( , , )}f f f1 2 31 1 0 0 1 1 1 0 1= = =

of R3 then

(a) T f( ) ( , )3 2 3=    (  )

(b) T f( ) ( , )3 1 3=    (  )

(c) T f( ) ( , )3 1 4=    (  )

(d) T f( ) ( , , )3 2 3 1=    (  )

( 4 )
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SECTION—B

( Marks : 15 )

Each question carries 3 marks

Answer the following questions : 3×5=15

1. If H  is the only subgroup of finite order m in the group G,

then prove that H  is a normal subgroup of G.

( 5 )
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2. Show that the intersection of two ideals of a ring R is an

ideal of R.

( 6 )
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3. Prove that, if f  is a homomorphism of a ring R into a ring 

¢R , with kernel S, then S is an ideal of R.

( 7 )
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4. Prove that every superset of a linearly dependent set of

vectors is linearly dependent.

( 8 )
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5. If l be an eigenvalue of a non-singular matrix A, then

prove that l-1 is an eigenvalue of A-1.

H H H

( 9 )
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