2014 (6th Semester) # MATHEMATICS Paper: Math-361 (Modern Algebra) Full Marks: 75 Time: 3 hours (PART : B—DESCRIPTIVE) (Marks: 50) The figures in the margin indicate full marks for the questions Answer one question from each Unit ## UNIT-1 State the fundamental theorem on homomorphism of groups. Hence, prove that if H is a normal subgroup of a group G, and K is a normal subgroup of G containing H, then $$\frac{G}{K} \cong \left(\frac{G}{H}\right) / \left(\frac{K}{H}\right)$$ 2+8=10 (Turn Over) | 2. | (a) | Show that $a \rightarrow a^{-1}$ is an automorphism of a group G if and only if G is Abelian. | 5 | | | | | | | | | |----|-------------|---|---|--|--|--|--|--|--|--|--| | | (Ъ) | Show that the multiplicative group $G = \{1, -1, i, -i\}$ is isomorphic to the group $G' = \{0, 1, 2, 3\}$ with addition modulo 4 as composition. | | | | | | | | | | | | | UNIT—2 | | | | | | | | | | | 3. | (a) | Prove that every finite integral domain is a field. | 7 | | | | | | | | | | | (b) | If S is an ideal of a ring R with unity 1 and $1 \in S$, then show that $S = R$. | | | | | | | | | | | 4. | (a) | Show that an ideal S of a commutative ring R is a prime ideal if and only if the residue class R/S is an integral domain. | | | | | | | | | | | | (b) | Show that a commutative ring with unity is a field if it has no proper ideal. | | | | | | | | | | | | | Unit—3 | | | | | | | | | | | _ | (-) | | | | | | | | | | | | о. | (a) | Show that every Euclidean ring is a PID. | 6 | | | | | | | | | | | <i>(</i> b) | If R is a commutative ring, then show that | | | | | | | | | | | | | (i) a/b , $b/c \Rightarrow a/c$ | | | | | | | | | | | ì | | (ii) a/b , $a/c \Rightarrow a/(b+c)$ | 4 | | | | | | | | | - 6. (a) Let R be a Euclidean ring and let a be a non-zero non-unit element in R. Suppose that $a = p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n$, where p_i , $i = 1, 2, \cdots, m$ and q_j , $j = 1, 2, \cdots, n$ are prime elements of R. Then show that m = n and each p_i is an associate of some q_j and each q_j is an associate of some p_i . - (b) Let D be an integral domain with unity element 1. Show that two non-zero elements $a, b \in D$ are associated if and only if a/b and b/a. ## UNIT-4 - 7. (a) Consider the set S of vectors $\alpha = (a_1, a_2, \dots, a_n)$ in R^n , where all α are such that a_3 is an integer. Is S a subspace of R^n ? Justify your answer. 1+2=3 - (b) If U and V are two subspaces of a finite dimensional vector space V, then show that - $\dim (U+V) = \dim U + \dim V \dim (U \cap V)$ 7 - 8. (a) Is the subset of a linearly independent set of vectors linearly independent? Justify your answer. 14G-200/561a (Turn Over) 6 (b) Define basis of a finite dimensional vector space. Show that every linearly independent subset of a finitely generated vector space V is either a basis of V or can be extended to form a basis of V. 2+5=7 ### UNIT-5 9. (a) Let V and W be vector spaces over the same field F and let T be a linear transformation from V into W. If V is finite dimensional, then show that $$rank(T) + nullity(T) = dim V$$ (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation whose matrix representation with respect to the basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 is $$A = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2 \end{bmatrix}$$ Find the matrix B of T relative to the ordered basis $\{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}$ of R^3 . 10. (a) Show that similar matrices have the same characteristic polynomial. 14G-200/561a (Continued) 6 4 3 (b) Let $$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$$. Find the matrix P such that $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$. *** #### 2014 (6th Semester) #### **MATHEMATICS** Paper: Math-361 (Modern Algebra) (PART : A—OBJECTIVE) (Marks : 25) The figures in the margin indicate full marks for the questions ### Answer all questions SECTION-A (Marks: 10) Put a Tick (1) mark against the correct answer in the brackets provided for it: 1×10=10 - 1. Which of the following statements is false? - (a) A subgroup H of a group G is normal if and only if $x^{-1}Hx = H$ - (b) If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G () - (c) Arbitrary intersection of two normal subgroups is a normal subgroup () - (d) The center Z of a group G is normal subgroup of G /561 | 2. The necessary and sufficient condition for a homomorphism f of a group G with identity e into a group G' with kernel K to be an isomorphism of G into G' is that | |---| | (a) $K = \emptyset$ | | (b) $K = \{e\}$ | | $(C) K = G \qquad () \qquad ,$ | | (d) $K = G'$ | | 3. The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring are | | (a) $a \in S$, $b \in S \Rightarrow a + b \in S \& ab \in S$ () | | (b) $a \in S$, $b \in S \Rightarrow a + b \in S$ & $\frac{a}{b} \in S$ () | | (c) $a \in S$, $b \in S \Rightarrow a - b \in S \& ab \in S$ () | | (d) $a \in S$, $b \in S \Rightarrow a - b \in S \& \frac{a}{b} \in S$ () | | 4. The set of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, where | | of integers is | | (a) a left ideal in the ring R of all 2×2 matrices with elements as integers | | (b) a right ideal in the ring R of all 2×2 matrices with elements as integers | | (c) an ideal in the ring R of all 2×2 matrices with | | (d) a subring and not an ideal in the ring R of all 2×2 matrices with elements as integers () | | | VI/MAT (ix)/561 | 5. | Let a be a non-zero | element in t | the Euclidean | ring R, | |----|---------------------|--------------|---------------|---------| | | then a is a unit if | | | | (a) $$d(a) \neq d(1)$$ () (b) $$d(a) = d(1)$$ () (c) $$d(a) < d(1)$$ () (d) $$d(a) > d(1)$$ () **6.** The associates of a non-zero element a + ib of the ring of Gaussian integers $D = \{a + ib, a, b \in I\}$ are (a) $$a + ib$$, $a - ib$, $-a + ib$, $-a - ib$ () (b) $$a + ib$$, $-a - ib$, $b + ia$, $b - ia$ () (c) $$a + ib$$, $-a - ib$, $-b - ia$, $b - ia$ () (d) $$a + ib$$, $-a - ib$, $-b + ia$, $b - ia$ () 7. Which of the following set of vectors is linearly independent in $V_3(R)$? (a) $$\{(1, 2, 1), (3, 1, 5), (3, -4, 7)\}$$ (b) $$\{(2, -3, 1), (3, -1, 5), (1, -4, 3)\}$$ (d) $$\{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$$ VI/MAT (ix)/561 | 4 | * 11 | 1999 | 4-94 | 171 | in. | follor
fortt | ving | fu
m2 | net
, | ion | s I | ' fro | m | R^{z} | int | o R | 18 | |------|------|------------|----------|------------|--------------|---------------------|------------------|------------|------------|------------|-----------|-------------|-------------|------------|-------------|--------------|-------------| | | | | | | | - (1 + | | | | (| |) | | | | | | | | A | (b) | 77 | ١, | (g) - | (v) | x_2 | | | (|) | | | | | | | | | K | >) | 171 | η | (g) - | (1) | - x ₂ | , 0) |) | | |) | | | | | | | | fe | (ý | 17 | ŋ. ' | (2) = | (sin | x_1 , | x_2 |) | | (|) | | | | | | | ٠ | 177 | ni
nii | 9.Y | era
A o | ry i
Fore | and
ier <i>n</i> | suff
ove | ici
r a | ent
fie | co
ld F | nd
Tto | itior
be | n fo
dia | or
agoi | a s
nisa | squa
able | are
e is | | | 144 | | | | | exa | | (| n
) | lii | nea | ırly | i | ind | ере | ende | ent | | | B | | | | | ex
rs | | (| n
) | | line | earl | y | d | epe | ende | ent | | | (60) | | | | | xact | | | + 1)
) | li | ne | arly | i | nde | epe | nde | ent | | | (42) | e e | l
ige | ha | s
ector | exac
rs | tly
(| | 1 + I | 1) | lin | ear | ly | d | epe | nde | ent | | 10. | 777 | e e | íKC | nva | lue | s of | a re | eal | sy | mn | net | ric | ma | trix | кa | re | | | | (40) | p | riii | V | ima | gina | ry | | (| |) | | | | | | | | | (b) | p | ire | ly | ima | gina | гу о | ra | zero |) | | (|) | | | | | | | (C) | al | 1 2 | ero | | (|) | | | | | | | | | | | | | 42) | al | l re | eal | | (|) | | | | | | | | | | | | X2.X | 5 15 | 128 | ٠. | | | | | | | | | | | | | | | SECTION—B (Marks: 15) Answer the following questions: $3 \times 5 = 15$ 1. If G is a group and H is a subgroup of index 2, then show that H is a normal subgroup of G. 2. Show that a field has no proper ideals If is a homomorphism of a ring R into a ring R with kernel K, then show that K is an ideal of R. Show that if two vectors are linearly dependent, then one of them is a scalar multiple of the other. Show that two eigenvectors of a square matrix A over a field F corresponding to two distinct eigenvalues are linearly independent. * * *