2014

(6th Semester)

MATHEMATICS

Paper: Math-361

(Modern Algebra)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-1

 State the fundamental theorem on homomorphism of groups. Hence, prove that if H is a normal subgroup of a group G, and K is a normal subgroup of G containing H, then

$$\frac{G}{K} \cong \left(\frac{G}{H}\right) / \left(\frac{K}{H}\right)$$

2+8=10

(Turn Over)

2.	(a)	Show that $a \rightarrow a^{-1}$ is an automorphism of a group G if and only if G is Abelian.	5								
	(Ъ)	Show that the multiplicative group $G = \{1, -1, i, -i\}$ is isomorphic to the group $G' = \{0, 1, 2, 3\}$ with addition modulo 4 as composition.									
		UNIT—2									
3.	(a)	Prove that every finite integral domain is a field.	7								
	(b)	If S is an ideal of a ring R with unity 1 and $1 \in S$, then show that $S = R$.									
4.	(a)	Show that an ideal S of a commutative ring R is a prime ideal if and only if the residue class R/S is an integral domain.									
	(b)	Show that a commutative ring with unity is a field if it has no proper ideal.									
		Unit—3									
_	(-)										
о.	(a)	Show that every Euclidean ring is a PID.	6								
	<i>(</i> b)	If R is a commutative ring, then show that									
		(i) a/b , $b/c \Rightarrow a/c$									
ì		(ii) a/b , $a/c \Rightarrow a/(b+c)$	4								

- 6. (a) Let R be a Euclidean ring and let a be a non-zero non-unit element in R. Suppose that $a = p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n$, where p_i , $i = 1, 2, \cdots, m$ and q_j , $j = 1, 2, \cdots, n$ are prime elements of R. Then show that m = n and each p_i is an associate of some q_j and each q_j is an associate of some p_i .
 - (b) Let D be an integral domain with unity element 1. Show that two non-zero elements $a, b \in D$ are associated if and only if a/b and b/a.

UNIT-4

- 7. (a) Consider the set S of vectors $\alpha = (a_1, a_2, \dots, a_n)$ in R^n , where all α are such that a_3 is an integer. Is S a subspace of R^n ? Justify your answer.

 1+2=3
 - (b) If U and V are two subspaces of a finite dimensional vector space V, then show that
 - $\dim (U+V) = \dim U + \dim V \dim (U \cap V)$ 7
- 8. (a) Is the subset of a linearly independent set of vectors linearly independent?

 Justify your answer.

14G-200/561a

(Turn Over)

6

(b) Define basis of a finite dimensional vector space. Show that every linearly independent subset of a finitely generated vector space V is either a basis of V or can be extended to form a basis of V.

2+5=7

UNIT-5

9. (a) Let V and W be vector spaces over the same field F and let T be a linear transformation from V into W. If V is finite dimensional, then show that

$$rank(T) + nullity(T) = dim V$$

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation whose matrix representation with respect to the basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 is

$$A = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2 \end{bmatrix}$$

Find the matrix B of T relative to the ordered basis $\{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}$ of R^3 .

10. (a) Show that similar matrices have the same characteristic polynomial.

14G-200/561a

(Continued)

6

4

3

(b) Let
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$$
. Find the matrix P such that $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

2014

(6th Semester)

MATHEMATICS

Paper: Math-361

(Modern Algebra)

(PART : A—OBJECTIVE) (Marks : 25)

The figures in the margin indicate full marks for the questions

Answer all questions

SECTION-A

(Marks: 10)

Put a Tick (1) mark against the correct answer in the brackets provided for it: 1×10=10

- 1. Which of the following statements is false?
 - (a) A subgroup H of a group G is normal if and only if $x^{-1}Hx = H$
 - (b) If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G ()
 - (c) Arbitrary intersection of two normal subgroups is a normal subgroup ()
 - (d) The center Z of a group G is normal subgroup of G

/561

2. The necessary and sufficient condition for a homomorphism f of a group G with identity e into a group G' with kernel K to be an isomorphism of G into G' is that
(a) $K = \emptyset$
(b) $K = \{e\}$
$(C) K = G \qquad () \qquad ,$
(d) $K = G'$
3. The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring are
(a) $a \in S$, $b \in S \Rightarrow a + b \in S \& ab \in S$ ()
(b) $a \in S$, $b \in S \Rightarrow a + b \in S$ & $\frac{a}{b} \in S$ ()
(c) $a \in S$, $b \in S \Rightarrow a - b \in S \& ab \in S$ ()
(d) $a \in S$, $b \in S \Rightarrow a - b \in S \& \frac{a}{b} \in S$ ()
4. The set of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, where
of integers is
(a) a left ideal in the ring R of all 2×2 matrices with elements as integers
(b) a right ideal in the ring R of all 2×2 matrices with elements as integers
(c) an ideal in the ring R of all 2×2 matrices with
(d) a subring and not an ideal in the ring R of all 2×2 matrices with elements as integers ()

VI/MAT (ix)/561

5.	Let a be a non-zero	element in t	the Euclidean	ring R,
	then a is a unit if			

(a)
$$d(a) \neq d(1)$$
 ()

(b)
$$d(a) = d(1)$$
 ()

(c)
$$d(a) < d(1)$$
 ()

(d)
$$d(a) > d(1)$$
 ()

6. The associates of a non-zero element a + ib of the ring of Gaussian integers $D = \{a + ib, a, b \in I\}$ are

(a)
$$a + ib$$
, $a - ib$, $-a + ib$, $-a - ib$ ()

(b)
$$a + ib$$
, $-a - ib$, $b + ia$, $b - ia$ ()

(c)
$$a + ib$$
, $-a - ib$, $-b - ia$, $b - ia$ ()

(d)
$$a + ib$$
, $-a - ib$, $-b + ia$, $b - ia$ ()

7. Which of the following set of vectors is linearly independent in $V_3(R)$?

(a)
$$\{(1, 2, 1), (3, 1, 5), (3, -4, 7)\}$$

(b)
$$\{(2, -3, 1), (3, -1, 5), (1, -4, 3)\}$$

(d)
$$\{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$$

VI/MAT (ix)/561

4	* 11	1999	4-94	171	in.	follor fortt	ving	fu m2	net ,	ion	s I	' fro	m	R^{z}	int	o R	18
						- (1 +				()					
	A	(b)	77	١,	(g) -	(v)	x_2			()						
	K	>)	171	η	(g) -	(1)	- x ₂	, 0)))					
	fe	(ý	17	ŋ. '	(2) =	(sin	x_1 ,	x_2)		()					
٠	177	ni nii	9.Y	era A o	ry i Fore	and ier <i>n</i>	suff ove	ici r a	ent fie	co ld F	nd Tto	itior be	n fo dia	or agoi	a s nisa	squa able	are e is
	144					exa		(n)	lii	nea	ırly	i	ind	ере	ende	ent
	B					ex rs		(n)		line	earl	y	d	epe	ende	ent
	(60)					xact			+ 1))	li	ne	arly	i	nde	epe	nde	ent
	(42)	e e	l ige	ha	s ector	exac rs	tly (1 + I	1)	lin	ear	ly	d	epe	nde	ent
10.	777	e e	íKC	nva	lue	s of	a re	eal	sy	mn	net	ric	ma	trix	кa	re	
	(40)	p	riii	V	ima	gina	ry		()						
	(b)	p	ire	ly	ima	gina	гу о	ra	zero)		()				
	(C)	al	1 2	ero		()										
	42)	al	l re	eal		()										
X2.X	5 15	128	٠.														

SECTION—B

(Marks: 15)

Answer the following questions:

 $3 \times 5 = 15$

1. If G is a group and H is a subgroup of index 2, then show that H is a normal subgroup of G.

2. Show that a field has no proper ideals

 If is a homomorphism of a ring R into a ring R with kernel K, then show that K is an ideal of R. Show that if two vectors are linearly dependent, then
one of them is a scalar multiple of the other.

 Show that two eigenvectors of a square matrix A over a field F corresponding to two distinct eigenvalues are linearly independent.

* * *