MATH/II/C	02	(2)
2017 (2nd Semester)	<i>(b)</i>	Reduce the matrix0131101131021120
MATHEMATICS		to the normal form and hence obtain its rank. 5
SECOND PAPER (Algebra)	2. (a)	Find the inverse of the matrix 9 7 6 7 1 8
<i>Full Marks</i> : 75 <i>Time</i> : 3 hours		342by elementary operations.5
(PART : B—DESCRIPTIVE) (Marks : 50) The figures in the margin indicate full marks	<i>(b)</i>	Determine whether the following system of linear equations is consistent or not, then solve the equations : 5 $5x \ 3y \ 7z \ 4$ $3x \ 26y \ 2z \ 9$ $7x \ 2y \ 10z \ 5$
<i>for the questions</i> swer five questions, taking one from each Unit		UNIT—II
UNIT—I (a) If A is a square matrix of order n and I is unit matrix of order n, then prove that $A(adj A) A I (adj A)A$	3. <i>(a)</i>	Let S be the set of all real numbers except -1. Define on S by $a \ b \ a \ b \ ab$ Show that is (i) commutative and (ii) associative. $2^{1/2}+2^{1/2}=5$

G7**/301a**

Answer **five**

1. (a) If A

(Turn Over) G7/301a WWW.gzrsc.edu.in

(Continued)

(3)

- (b) Prove that the inverse of the product of two elements of a group *G* is the product of the inverses taken in the reverse order.
- **4.** (a) Prove that every subgroup of a cyclic group is cyclic.
 - (b) Let H be a subgroup of G. Let the relation ~ be defined on G by a ~ b if and only if ab^{-1} H. Then prove that—
 - (i) ~ is an equivalence relation;
 - (ii) ~ decomposes G into right cosets of H in G. $2\frac{1}{2}+2\frac{1}{2}=5$

Unit—III

- **5.** (a) State and prove Euler's extension of Fermat's theorem and apply it to show that the remainder on dividing 7⁹ by 15 is 7.
 - (b) Let f: G G be a group homomorphism. Prove that ker $f \{e\}$, if and only if f is an isomorphism.
- **6.** (a) Define isomorphism of a group. If *R* is the additive group of real numbers and *R* is the multiplicative group of all positive real numbers, then prove that f: R *R* defined by $f(x) e^x$ for all *x R* is an isomorphism of *R* onto *R*. 2+4=6

(4)

(b) Prove that the order of every element of a finite group is a divisor of the order of the group.

UNIT—IV

- 7. (a) If a polynomial f(x) is divided by $(x \ a)(x \ b), \ a \ b$ then prove that the remainder is $\frac{(x \ b)f(a) \ (x \ a)f(b)}{a \ b}$ 5
 - (b) Prove that x^4 x^2 1 is a factor of x^{12} 1 0. 5
- **8.** (a) Find the remainder, when
 - x^{5} $3x^{4}$ $4x^{2}$ x 4 is divided by (x 1)(x 2). 4
 - (b) If a polynomial f(x) be divided by a binomial (x h), then show that the remainder is f(h).
 - (c) Find the value of a in order that the expression $4x^4$ (a 1) x^3 ax^2 6x 1 may be divisible by (2x 1).

3

4

G7**/301a**

(Turn Over) G7/301a

5

5

6

4

(Continued)

UNIT—V

- **9.** (a) Solve the equation x^3 3x 1 0 by Cardan's method. 6
 - (b) If , , are the roots of the equation $x^3 px^2 qx r 0$ then find the value of $\frac{2}{2}$ 4
- **10.** (a) The equation $ax^3 \ 3bx^3 \ 3cx \ d \ 0$ has two equal roots. Prove that $(bc \ ad)^2 \ 4(b^2 \ ac)(c^2 \ bd)$ 5
 - (b) If , , are the roots of the equation

$$x^3 px^2 qx r 0$$

then find the equation whose roots are

$$\frac{1}{-}, \frac{1}{-}, \frac{1}{-}$$
 5

 $\star\star\star$

G7—300**/301a**

Subject Code : MATH/II/02

.....

i.....j

Booklet No. A

	Date Stamp
To be filled in by the Candidate	
DEGREE 2nd Semester (Arts / Science / Commerce /) Exam., 2017	
Subject	
Paper	To be filled in by the Candidate
INSTRUCTIONS TO CANDIDATES	DEGREE 2nd Semester
1. The Booklet No. of this script should be	(Arts / Science / Commerce /
quoted in the answer script meant for descriptive type questions and vice versa.) Exam., 2017
2. This paper should be ANSWERED FIRST	Roll No
and submitted within <u>1 (one) Hour</u> of the commencement of the Examination.	Regn. No
3. While answering the questions of this	Subject
booklet, any cutting, erasing, over- writing or furnishing more than one	Paper
answer is prohibited. Any rough work, if required, should be done only on	Descriptive Type
the main Answer Book. Instructions given in each question should be followed for answering that question	Booklet No. B
followed for answering that question	

Signature of Scrutiniser(s)

only.

Signature of Examiner(s) Signature of Invigilator(s)

!_____i

/301

MATH/II/02

2017

(2nd Semester)

MATHEMATICS

SECOND PAPER

(Algebra)

(PART : A—OBJECTIVE)

(Marks: 25)

SECTION—A

(*Marks* : 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

1 2 3 1. The rank of matrix A 2 3 4 is 0 2 2

 $\begin{array}{cccc}
(a) & 2 & & \square \\
(b) & 1 & & \square \\
(c) & 0 & & \square \\
\end{array}$

(d) 3 🗆

/301

(2)

- **2.** If *A* and *B* are Hermitian, then *AB* BA is Hermitian and *AB* BA is
 - (a) Hermitian \Box
 - (b) skew-Hermitian \Box
 - (c) symmetric \Box
 - (d) skew-symmetric \Box
- **3.** The number of binary composition on a finite set *A* having *n* elements is
 - (a) n^{n^2} \Box (b) 2^{n^2} \Box (c) n^n \Box (d) n! \Box
- **4.** The number of generators of a cyclic group of order 8 is
 - (a)
 16
 \Box

 (b)
 4
 \Box

 (c)
 1
 \Box

 (d)
 32
 \Box

MATH/II/02**/301**

(3)

5. When 99^{20} is divided by 25, then the remainder is

- (a) 20 🗆
- *(b)* 5 □
- *(c)* 15 □
- (d) 1 \Box

6. A homomorphism of a group into itself is called

- (a) an isomorphism \Box
- (b) kernel of a homomorphism \Box
- (c) an endomorphism \Box
- (d) an automorphism \Box
- 7. The expression x^5 61x *p* is divisible by *x* 1. The value of *p* is
 - (a) 62 🗆
 - *(b)* 60 □
 - (c) 60 🗆
 - (d) 0 \Box

MATH/II/02**/301**

(4)

- **8.** If a polynomial f(x) is divided by $(x \ a)$ and if the remainder $R \ f(a) \ 0$, then $(x \ a)$ is a factor of
 - (a) f(a) \Box
 - (b) f(x) \Box
 - (c) $(x \ a)$
 - (d) a \Box

9. The equation x^{12} x^4 x^3 x^2 1 0 has

- (a) at least six complex roots \Box
- (b) two real roots and four complex roots \Box
- (c) at least six real roots \Box
- (d) three real roots and three complex roots \Box

10. The de Moivre's form of complex number 3 4i is

- (a) $5(\cos i \sin)$ \Box
- (b) $5(\cos i \sin)$ \Box
- (c) $3(\cos i \sin)$
- (d) $4(\cos i \sin)$

MATH/II/02**/301**

(5)

SECTION-B

(*Marks* : 15)

Each question carries 3 marks

State *True* or *False* of the following with a brief justification :

1. The rank of a skew-symmetric matrix is greater than or equal to 2.

Justification :

MATH/II/02**/301**

(6)

2. In a group (G,), the elements a and b commute, then a^{-1} and b also commute.

True \Box False \Box

Justification :

MATH/II/02**/301**

3. If f: G is a homomorphism and f(G) is the homomorphism image of G in G, then f(G) is a subgroup of G.

True 🗆 False 🗆

Justification :

MATH/II/02**/301**

(8)

4. x 1 is a root of the equation x^3 3x 2 0 of multiplicity 2.

True \Box False \Box

Justification :

MATH/II/02**/301**

5. The roots of a cubic equation are 2 i, 2 i and 3. The equation is x^3 $7x^2$ 17x 15 0.

(9)

True 🗆 False 🗆

Justification :

G7—300**/301**

MATH/II/02