2015

(5th Semester)

MATHEMATICS

Paper: MATH-353

(Complex Analysis)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

- 1. (a) Show that the modulus of sum of two complex numbers is always less than or equal to the sum of their moduli.
 - (b) Find the centre and radius of the circle passing through the points 1, i, 1+i.

5

5

2. (a) If z_1 and z_2 are two complex numbers, then prove that

$$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2$$

if and only if $z_1\bar{z}_2$ is purely imaginary.

. 5 ≥s

(b) If z_1 , z_2 , z_3 are the vertices of an isoceles triangle, right angled at the vertex z_2 , then prove that

$$z_1^2 + z_2^2 + z_3^2 = 2(z_1 + z_3)z_2$$

UNIT-II

3. (a) For what value of z the function defined by the equation

 $z = \sin u \cosh v + i \cos u \sinh v$, $\omega = u + iv$ ceases to be analytic?

5

5

5

5

- (b) Show that the function f(z) = xy + iy is everywhere continuous but not analytic.
- 4. (a) If $u = x^3 3xy^2$, show that there exists a function v(x, y) such that $\omega = u + iv$ is an analytic function in a finite region.
 - (b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin although Cauchy-Riemann equations are satisfied at that point.

G16/140a

(Turn Over)

UNIT-III

- 5. (a) State and prove Cauchy-Hadamard formula for the radius of convergence.
 - he 6
 - (b) Find the radius of convergence of the following power series:
 - (i) $\sum \frac{z^n}{2^n+1}$
 - (ii) $1 + \frac{a \cdot b}{1 \cdot c} z + \frac{a \cdot (a+1)b \cdot (b+1)}{1 \cdot 2 \cdot c \cdot (c+1)} z^2 + \cdots$
 - 6. (a) Find the domain of convergence of the power series

$$\sum \left(\frac{2i}{z+1+i}\right)^n$$

(b) Find the region of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$$

UNIT-IV

7. (a) Using the definition of the integral of f(z) on a given path, evaluate

$$\int_{-2+i}^{5+3i} z^3 dz$$
 5

(b) If f(z) is analytic within and on a closed contour C and a is any point within C, then show that

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z-a)}$$

8. (a) Write down the Cauchy's integral formula for the derivative of an analytic function; hence show that for a function f(z) which is analytic in a region D and if f(z) has, at any point z = a of D, derivatives of all orders, all of which are again analytic functions in D, their values are given by

$$f^{n}(a) = \frac{\lfloor n}{2\pi i} \int_{C} \frac{f(z) dz}{(z-a)^{n+1}}$$

where C is any closed contour in D surrounding the point z = a.

(b) Evaluate by Cauchy integral formula

$$\int_C \frac{zdz}{(9-z^2)(z+i)}$$

UNIT-V

- 9. (a) Expand $\frac{z+3}{z(z^2-z-2)}$ for the region |z| > 2.
 - (b) Examine the nature of the following functions:

(i)
$$\frac{1}{1-e^z} \text{ at } z = 2\pi i$$

(ii)
$$\frac{1}{\sin z - \cos z}$$
 at $z = \frac{\pi}{4}$

10. State and prove Liouville's theorem. Use this result to prove the fundamental theorem of algebra.
1+4+5=10

G16-350/140a

V/MAT (vii)

6

2. The read out of

3. The analytic function v

OMINITY TAMINY

4. The function sin receible Fices to

the construers but not analytic

2015

(5th Semester)

MATHEMATICS

Paper: MATH-353

(Complex Analysis)

(PART : A-OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the box provided:

- 1. If \overline{z} is the conjugate of z, then
 - (a) $|z| > |\overline{z}|$
 - (a) neither continuous nor analytic $|\bar{z}| > |z|$ (d)
 - (c) $|z| = |\overline{z}|$ \Box $|\overline{z}| = |z|$ (a) continuous es well as analytic everyone |z| = |z|
 - (d) $|z| = -|\bar{z}|$ \Box \Box $|\bar{z}| = |z|$ (b)

/140

		1			5	ic
2.	The	real	part	of	$\frac{5}{-3+4i}$	19

(a)
$$\frac{3}{5}$$

(b)
$$-\frac{3}{5}$$

(c)
$$-\frac{4}{5}$$

(d)
$$\frac{4}{5}$$

3. The analytic function whose imaginary part in $e^x \cos y$ is

(a)
$$e^z$$

(b)
$$ie^z$$

(c)
$$ie^{-z}$$

(d)
$$e^{-z}$$

4. The function $\sin x \cosh y + i \cos x \sinh y$ is

- (a) neither continuous nor analytic
- (b) continuous but not analytic
- (c) continuous as well as analytic everywhere
- (d) not analytic everywhere

V/MAT (vii)/140

5. If	$\lim_{n\to\infty} u_r ^{1/n}$	= l, then	the serie	es Σu_n	is abso	olutely		
co	nvergent for							
(a)	l>1 [3			nS (
(b)	<i>l</i> < 1	3			75- (
(c)	<i>l</i> = 1	ם						
(d)	<i>l</i> ≥ 1	ם						
				•				
6. Th	e power ser	ies $\sum \underline{n} z'$	will con	verge	rand a	9. 11		
(a)	if $z = 0$							
(b)	if z =1			, Visto		(I)		
(c)	if z >1		ylae					
(d)	for all real	values of a	z [_	yina i				
7. A Jordan curve consisting of continuous chain of a finite number of regular arcs is called a								
(a)	continuous	arc		41.00 to 0.00	/0/TEST	la)		
(b)	contour		dnessy.					
(c)	rectifiable a	arc [Inglie Sala				
(d)	multiple ar	c 🗆						
V/MAT (vii	i)/140							

8	3. Th	ne value	of the	integral	$\int_C \frac{d}{z}$	$\frac{z}{a}$, while	e C is the	he circle
		$-a =\rho$ is				7.	i faugra.	17805
	(a)	2π					161	(a)
	(b)	-2π					(>4	(4)
	(c)	$2\pi i$						10
	(d)	$-2\pi i$					$1 \le 1$	(0)
9	. Th	e functio	$\int_{z(z-z)}^{z+1} \frac{z+1}{z(z-z)}$	has/h	nave si	ingularit	y/singula	arities a
	(a)	z = 0 on	ly				0=811	$\langle \alpha \rangle$
	(b)	z = 2 on	ly			ä	1-18/12	(b)
	(c)	z = 0 an	dz = 2	only			· [-]=[1.	(0)
	(d)	z = -1 o	nly		s lo		on He ma	(12)
10.	The	nature	of the	function	$n \frac{\sin}{(z)}$	$\frac{(z-a)}{(z-a)}$ a	t z = a is	ana Prv V
		removab					Out Lifton	
	(b)	non-isol	ated si	ngularit	ty		tuojnje	(4)
	(c)	isolated	singul	arity		016.5	ldsāli.ssy	
	(d)	pole					ok Ham	

VINATION 140

V/MAT (vii)/140

SECTION—B

(Marks: 15)

Each question carries 3 marks

· Answer all questions

Answer the following:

1. Prove that for any complex number z, $|z|^2 = z\overline{z}$, where \overline{z} is the conjugate of z.

2. With suitable example, show that continuity is not a sufficient condition for the existence of a finite derivative.

3. Examine the convergence of the acres Ya"

4. Show that $\int_{C} \frac{ds}{s} = 2\pi i$, where C is a complete circle

5. Define non-isolated singularity with a suitable example.

G16-350/140

V/MAT (vii)