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The figures in the margin indicate full marks
for the questions

Answer five questions, selecting one
from each Unit

UNIT—I

1. (a) Prove that every open cover of a

compact set admits of finite subcover. 6

(b) Show that a set is closed if and only if

its complement is open. 4

2. State and prove the Bolzano-Weierrstrass

theorem for the subsets of Rn . 2+8=10
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UNIT—II

3. (a) State and prove intermediate value

theorem of a real valued function of

several real variables. 1+5=6

(b) Prove that the function
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1

2

1

! !
...

!
,+ + + Î

n
n N

is not continuous at ( , )0 0 . 4

4. (a) Define limits of functions of several

variables. Let

   lim ( )
x a

f x b
®

=  and b b b bn= ( , , ..., )1 2 ,

              f f f fm= ( , , ..., )1 2

then show that lim ( ) ,
x a

i if x b i m
®

= £ £1 .

2+5=7

(b) Show that the function

f x y
x y

x y
( , ) =

-

+

2 2

2 2

has repeated limits. 3
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UNIT—III

5. (a) Given

   f x y

xy

x y
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x y
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, ( , ) ( , )
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¹
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2 2
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0 0 0

Show that f  is continuous, possesses

partial derivatives but is not

differentiable at ( , )0 0 . 6

(b) Let

   f x y

x y

x y
x y

x y

( , )
, ( , ) ( , )

, ( , ) ( , )

= +
¹

=

ì

í
ï

î
ï

2

4 2
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0 0 0

Show that f  has a directional derivative

at ( , )0 0  in any direction b = ( , )l m , 

l m2 2 1+ =  but f  is discontinuous at 

( , )0 0 . 4

6. (a) Prove that a function which is

differentiable at a point admits of partial 

derivatives at the point. 5

(b) Show that the functions u x y z= + + , 

v x y z= - + , w x y z yz= + + -2 2 2 2  are

not independent. Find the relation

among them. 5
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UNIT—IV

7. State and prove Young’s theorem. 2+8=10

8. (a) If

   f x y

x y
y

x
x

y x

( , )

( ) tan ,
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then show that f fxy yx( , ) ( , )0 0 0 0¹ . 5

(b) Show that the function

f x y x x y y( , ) = - +2 34 2 2

has neither a maxima nor a minima at 

( , )0 0 . 5

UNIT—V

9. (a) Let X be the set of all sequences of

complex numbers. Show that the

function d defined by

d x y
x y

x yn
n n

n n

( , )
| |

( | |)
,=

-

+ -
å

1

2 1

        " = = Îx x y y Xn n{ } , { }

is a metric space. 5

(b) Prove that every compact subset A of a

metric space ( , )X d  is bounded. 5
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10. Define complete metric space. Let X be the

set of all continuous real valued functions

defined on [ , ]0 1 and let

d x y x t y t dt x y X( , ) | ( ) ( )| , ,= - Îò0
1

Show that ( , )X d  is not complete. 2+8=10

H H H
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MATH/V/06

2 0 1 7

( 5th Semester )

MATHEMATICS

Paper : MATH–352

( Real Analysis )

( PART : A—OBJECTIVE )

( Marks : 25 )

Answer all questions

SECTION—A

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct answer in the box

provided :

1. In R2, the limit point of the set Q x y x Q y Q2 = Î Î{( , ) : , }

is

(a) ( , )0 0    £

(b) ( , )1 1   £

(c) every point of R2   £

(d) None of the above   £
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2. If every limit point of a set belongs to the set, then the set

is

(a) closed   £

(b) open   £

(c) derived   £

(d) None of the above   £

3. A function f x y( , ) is said to be continuous if

(a) it is continuous at isolated point only   £

(b) it is continuous at each point of its domain    £

(c) it is continuous at some deleted neighbourhood of

domain   £

(d) None of the above   £

4. The range of a function continuous on a compact set is

(a) cover   £

(b) subcover   £

(c) compact   £

(d) None of the above   £

( 2 )
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5. If a real valued function f  defined in an open set D Ì Rn

possesses first order partial derivatives at each point of D

and the functions D f1 , D f2 , … D fn  are all continuous,

then f  is

(a) derivable in D   £

(b) partially derivable in D    £

(c) continuously derivable in D   £

(d) not derivable in D   £

6. lim
( , ) ( , )

h

f x h y f x y

h®

+ -

0
, if exist is called the partial

derivative of f  with respect to

(a) x at ( , )a b    £

(b) x at ( , )x y    £

(c) y at ( , )a b    £

(d) y at ( , )x y    £

7. If ( , )a b  be a point of the domain contained in R2 of a

function f  such that f x  and f y are both differentiable at 

( , )a b , then

(a) f a b f a bxy yx( , ) ( , )¹    £

(b) f a b f a bxy yx( , ) ( , )=    £

(c) f xy and f yx  do not exist at ( , )a b    £

(d) None of the above   £

( 3 )
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8. When

f a b f a b f a b

f a b

f a b

xx yy xy

xx

yy

( , ) ( , ) { ( , )}

, ( , ) ,

( ,

× - <

¹

2

0 0

) ¹ 0

then f  is

(a) minimum at ( , )a b    £

(b) maximum or minimum at ( , )a b    £

(c) maximum at ( , )a b    £

(d) None of the above   £

9. The subset S x y x y x y R= + < Î{( , ) : , , }2 2 1  of R2 with the

Euclidean metric is

(a) open   £

(b) closed   £

(c) bounded   £

(d) compact   £

10. If every Cauchy sequence of X  converges to a point of X ,

then a metric space ( , )X d  is

(a) compact   £

(b) interior   £

(c) complete   £

(d) closure   £

( 4 )
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SECTION—B

( Marks : 15 )

Each question carries 3 marks

Answer the following :

1. Prove that the union of a finite number of open sets in R is 

an open set.

( 5 )
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2. Define convex set and uniform continuity.

( 6 )
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3. If

u
x x

x
u

x x

x
u

x x

x
1

2 3

1
2

1 3

2
3

1 2

3
= = =, ,     

then prove that J u u u( , , )1 2 3 4= .

( 7 )
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4. State Taylor’s theorem for a real valued function in Rn .

( 8 )
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5. Let A be any subset of a metric space ( , )X d . Then prove

that A A=  if and only if A is closed. (A is closure of A )

H H H

( 9 )
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