2015

(5th Semester)

MATHEMATICS

Paper: MATH-352

(Real Analysis)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- Define a limit point of a set. Prove that every infinite and bounded set has at least one limit point.
- 2. (a) Prove that every open cover of a compact set admits of a finite subcover. 6
 - (b) Show that a set is closed if and only if its complement is open.

 4

G16/139a

(Turn Over)

UNIT-II

3. (a) Prove that a function continuous on a compact domain is uniformly continuous.

6

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Then test the continuity of f at (0, 0).

- 4. (a) State and prove intermediate value theorem. 1+5=6
 - (b) Let

$$\lim_{x \to a} f(x) = b \text{ and } b = (b_1, b_2, \dots, b_m)$$

$$f = (f_1, f_2, \dots, f_m)$$

Then show that

$$\lim_{x\to a} f_i(x) = b_i, \ 1 \le i \le m$$

UNIT—III

 (a) If α, β, γ are the roots of the equation in t, such that

$$\frac{u}{a+t} + \frac{v}{b+t} + \frac{w}{c+t} = 1$$

then prove that

$$\frac{\partial(u, v, w)}{\partial(\alpha, \beta, \gamma)} = -\frac{(\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)}{(b - c)(c - a)(a - b)}$$

G16/139a

(Continued)

(b) Prove that a function which is differentiable at a point admits of partial derivatives at the point.

4

6. If

$$f(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

show that-

- (i) f is continuous at (0, 0);
- (ii) directional derivative of f exists at (0, 0) in every direction;
- (iii) f is not differentiable at (0, 0). 3+2+5=10

UNIT-IV

7. State and prove Young's theorem.

2+8=10

8. (a) Show that the function

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

does not satisfy the conditions of Schwarz's theorem and

$$f_{xy}(0, 0) \neq f_{yx}(0, 0)$$

7

(Turn Over)

(b) Show that

$$f(x, y) = (y-x)^4 + (x-2)^4$$

has a minimum at (2, 2).

3

UNIT-V

9. (a) Let (X, d) be any metric space. Then show that the function d_1 defined by

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \ \forall x, y \in X$$

is a metric on X.

6

(b) Let (X, d) be a metric space and let x, y, z be any three points of X, then show that

$$d(x, y) \ge |d(x, z) - d(z, y)|$$

4

10. (a) Prove that every compact subset F of a metric space (X, d) is closed.

6

(b) In a metric space (X, d), prove that the intersection of an arbitrary family of closed sets is closed.

_

2015

(5th Semester)

MATHEMATICS

Paper: MATH-352

(Real Analysis)

(PART : A-OBJECTIVE)

(Marks: 25)

Answer all questions

SECTION-A

(Marks: 10)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the box provided:

1. In \mathbb{R}^2 , the limit point of the set

$$\left\{ \left(\frac{1}{m}, \frac{1}{n}\right); m \in N, n \in N \right\}$$

is

- (a) (0, 0)
- (b) (1, 1)
- (c) (0, 1)
- (d) None of the above

ay man by vivo il . &

/139

2.	A s	et is sai	d to be	compact	if and o	nly if it	t is	
	720 0	bounde						
	(b)	both be	ounded	and close	d C]		
	(c)	open		T 189 A 7 6				
	(d)	None o	f the al	bove	17.4			
					1.1679			
3.	If e	very ope d to hav	n cover e	of the set	admits a	finite s	subcove	er, it i
	(a)	the Ca	ntor int	tersection	property	, [-	
	(b)	the Lin	deloff o	covering p	roperty			
	(c)	the He	ine-Bor	el propert	y C]		
	(d)	None o	of the a	bove		5A		
		m www.				dry m	Y 1015	
4.	If x	z + y + z	= u, y +	z = uv, z =	= <i>uvw</i> , t	hen		A. Carrie
				$\frac{\partial(x, y,}{\partial(u, v,}$	<u>z)</u> w)	remi!	11 5 A	
	is e	qual to						
	(a)	u^2v						21
	(b)	uv^2						Į, Ą
	(c)	นข	П				(1 1)	f(x)
	30 050					- 5		
*	(a)	u^2v^2			77 N.		nioV	1/2
V/M/	AT (vi)/139						

5.	Let f be a real valued function with an open set $D \subset \mathbb{R}^n$ as its domain. Then the function admits of directional derivative at every point where it admits of
	(a) continuous first-order partial derivatives
	(b) first-order partial derivatives
	(c) second-order partial derivatives
	(d) None of the above
6.	Let X be a non-empty set and d is a function from $X \times X$ into R such that $d(x, y) = 0$ if and only if $x = y$. Then (X, d) is a metric space if $\forall x, y, z \in X$
	(a) $d(x, y) = d(y, x)$
	(b) $d(x, y) \leq d(x, z) + d(y, z)$
	(c) $d(x, z) + d(z, y) \le d(x, y)$
	(d) None of the above \Box
1 <u>1-11-1</u>	(c) there exists no Camby sequence in X
7.	If $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
	then the directional derivative of f at $(0, 0)$
	Light to the state of the state
	(a) does not exist (b) exists in all directions (c)
	(b) exists in an directions —
	(c) exists in a particular direction
	(d) None of the above

8.	f	(a, b) be a point of the domain $D \subset \mathbb{R}^2$ of a real valued at (a, b) and $($
		$f_{yx}(a, b) = f_{xy}(a, b) \qquad \Box$
	(b)	$f_{yx}(a, b) > f_{xy}(a, b)$
	(c)	$f_{yx}(a, b) < f_{xy}(a, b)$
		None of the above
_		or method as a body of grand con a of X and a con a con grand gran
У.	An	netric space (X, d) is said to be complete if
	(a)	every Cauchy sequence in X diverges to a point of X
	(b)	every Cauchy sequence in X converges to a point of X
	(c)	there exists no Cauchy sequence in X
	(d)	None of the above
١٥.	If f	$f(x, y) = x^3 + y^3 - 3x - 12y + 20$, then f is
	(a)	maximum at (1, 2)
	(b)	minimum at (-1, -2) □
	(c)	minimum at (1, 2)
	(d)	None of the above

SECTION—B roll and fell world &

(Marks: 15)

Each question carries 3 marks

Answer the following:

1. Show that $f(x, y) = y^2 + x^2y + x^4$ has a minimum at (0, 0).

Show that the intersection of any finite family of open sets is open. 3. Define closure of a set Show that a set A is closed if and only if A = A.

4. Show that the function

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is not differentiable at (0, 0).

5. Prove that every closed subset of a compact metric space is compact.

...

V/MAT (VI)