2015

(4th Semester)

ELECTRONICS

FOURTH PAPER

(Pulse Switching Circuit)

(PART : A—OBJECTIVE)

(Marks : 20)

SECTION—I

(Marks : 5)

Each question carries 1 mark

Answer all questions

Put a Tick (✓) mark against the correct answer in the brackets provided:

1.	A	Wien-bridge	oscillator	uses	 feedback.

(a)	only positive	()		· **
(b)	only negative	()		
(c)	both positive an	d negative	. ()
(d)	zero ()			

2.	In (Colpitts' oscillator, feedback is obtained
	(a)	by magnetic induction ()
	(b)	by a tickler coil ()
20	(c)	from collector of transistor ()
	(d)	from the centre of split capacitor ()
3.	Pos	itive feedback is used in
	(a)	amplifier ()
	(b)	oscillator ()
	(c)	rectifier ()
	(d)	filter ()
IV/E	LEC	(iv) /268 www.gzrsc.edu.in

4.	If	A	and	B	repres	ent	the	inputs	of	an	exclusive	OR
	ga	te	, its	ou	tput Y	is	giver	ı by			**	

(a)
$$Y = A \cdot B + B \cdot A$$
 ()

(b)
$$Y = A + B + (B \cdot A)$$
 ()

(c)
$$Y = A \cdot \overline{B} + \overline{A} \cdot B$$
 ()

(d)
$$Y = \overline{AB} + B \cdot A$$
 ()

5. The switching time (time period) of an astable multivibrator is

(a)
$$1.2RC$$
 sec ()

(d)
$$1/RC \sec$$
 ()

SECTION-II

(Marks: 15)

Each question carries 3 marks

Answer any five questions

1. What do you mean by open-loop gain and closed-loop gain in a feedback amplifier?

2. Write the mathematical and graphical explanation of Barkhausen criterion for sustained oscillation.

3. With the help of a neat diagram, discuss the working of an OR gate.

4. A tuned-collector capacitor has a fixed inductance of $100\,\mu\text{H}$ and has to be tunable over the frequency band of $500\,\,\text{kHz}$ to $1500\,\,\text{kHz}$. Find the range of variable capacitor to be used.

5. Write three advantages of negative feedback.

6. What are the advantages of digital voltmeter as compared to other voltmeters? Draw the block diagram of digital voltmeter.

7. A crystal has the parameters $L=3\cdot3$ H, C=65 pF, $R=5\cdot5$ k Ω and $C_s=10$ pF. Calculate the series resonant and parallel resonant frequencies of the crystal.

8. Draw the circuit diagram of Schmitt trigger and explain its working.

- (b) Explain the circuit operation of Colpitts' oscillator. Also derive its frequency of oscillations. 2+3=5
- **5.** (a) What would be the output signal if two input binary signals given by $A = 101011_2$ and $B = 110101_2$ are applied to (i) AND gate, and (ii) NAND gate? 2+2=4
 - (b) Multiply 1111₂ by 0111₂ using binary multiplication method.

Or

- (a) Convert 101·11₂ into its equivalent decimal number.
- (b) Convert 92 into its equivalent binary number.
- (c) Show that

 $AB\overline{C} + A\overline{B}C + \overline{A}BC + ABC + A\overline{B}\overline{C} = A + BC$ 3

+++

2015

(4th Semester)

ELECTRONICS

FOURTH PAPER

(Pulse Switching Circuit)

Full Marks: 55

Time: 21/2 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- **1.** (a) Distinguish between sinusoidal and non-sinusoidal oscillator.
 - (b) Explain the circuit operation of phaseshift oscillator. Also write its advantages and disadvantages. 3+2=5

3

2

2

2

Or

(a)	In	the	Wi	Wien-bridge				oscillator,	
		$R_2 = 220$	kΩ	and	$C_1 =$	$=C_2$	= 250	pF.	
	Dete	rmine th	ie fr	equer	icy c	of os	scillatio	ns.	

(b) What is piezoelectric effect? From negative resistance equivalent circuit, derive resistive cut-off frequency and self-resonant frequency. 1+4=5

- 2. (a) With neat diagrams, explain various types of negative feedback.
 - (b) What is feedback? Derive an expression for the gain of negative feedback amplifier. 1+3=4

Or

- (a) With mathematical expression, show how distortion is reduced in an amplifier with the application of negative feedback.
- (b) How does the negative feedback bring about the change in input impedance of an amplifier?
- 3. (a) What is multivibrator?
 - (b) Discuss with suitable circuit diagram, the circuit details and the operation of transistor bistable multivibrator.

Or

- (a) Write the uses of Schmitt trigger.
- b) In a stable multivibrator shown below, $R_2 = R_3 = 10 \text{ k}\Omega$ and $C_1 = C_2 = 0.01 \mu\text{F}$:

Determine the time period and frequency of the square wave. 2+2=4

- 4. (a) Write the circuit diagram of shunt-fed Hartley oscillator.
 - (b) Derive the frequency of oscillation of tuned-collector oscillator.

Or

(a) For the Colpitts' oscillator, $C_1 = 750$ pF, $C_2 = 2500$ pF and L = 40 µH. Determine the operating frequency.

3

6

2

5

2

3