2015

(3rd Semester)

ELECTRONICS

THIRD PAPER

(Electronic Devices and Amplifiers)

(PART : A—OBJECTIVE)

(Marks : 20)

The figures in the margin indicate full marks for the questions

SECTION—I
(Marks: 5)

Put a Tick (1) mark against the correct answer in the brackets provided: 1×5=5

1. The intrinsic stand-off ratio of a UJT lies between

(a)	0·15 and	0.82	()
(b)	0·15 and	0.28	()
(c)	0·51 and	0.82	()
(d)	0·28 and	0.51	•)

2.	The	control element in an SCR is
52	(a)	cathode ()
	(b)	anode ()
	(c)	cathode supply ()
	(d)	gate ()
3.		e advantage of using transistor in transistor series ulator is
	(a)	it behaves like a variable resistor ()
	(b)	its high amplification property ()
	(c)	it reduces Zener current by a factor β ()
	(d)	its series connection with the load ()
4.	The	e OP-AMP can amplify
	(a)	a.c. signal only ()
	(b)	both a.c. and d.c. signals ()
	(c)	d.c. signal only ()
	(d)	neither d.c. nor a.c. signal ()
III/E	LEC	(iii)/65

www.gzrsc.edu.in

5.	Crossover	distortion	occurs	in		amplifiers.
----	-----------	------------	--------	----	--	-------------

(a) push-pull ()

(b) class A ()

(c) class AB ()

(d) class C ()

SECTION-II

(Marks: 15)

Answer any five questions of the following:

 $3 \times 5 = 15$

1. Mention three differences between JFET and BJT.

2. Explain the formation of p-n junction diode.

3. State and explain parameters of JFET.

4. Explain how Zener diode can be used as meter protector.

5. Discuss the construction of solar cell with a neat diagram.

- **6.** A transformer coupled class A amplifier operates from $V_{\rm cc} = 20 \, \text{V}$ draws a no-signal current of 5 A and feeds a load of 40 Ω through a step-up transformer of $N_2 / N_1 = 3 \cdot 16$. Find—
 - (a) maximum a.c. signal power output;
 - (b) maximum d.c. power input;
 - (c) conversion efficiency at maximum signal input.

7. State the advantages of tuned amplifier.

8. Define input offset voltage in an OP-AMP and also mention the effect of temperature change in OP-AMP.

Or

- (a) Find the expression for overall gain in an OP-AMP in case of non-inverting configuration.
- (b) Find the voltage gain of a non-inverting OP-AMP amplifier from the circuit diagram given below:

2015

(3rd Semester)

ELECTRONICS

THIRD PAPER

(Electronic Devices and Amplifiers)

Full Marks: 55

Time: 21/2 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- 1. (a) Describe in brief how JFET acts as an amplifier.
 - (b) Explain the construction and working of depletion-type MOSFET.

Or

- (a) What is pinch-off voltage? Write two applications of FET. 1+2=3
- (b) Discuss the construction and working of FET.

4

3

3

4

2.	(a)	Discuss	the	operation	of SCR.		3
	(b)	Explain	the	output	characteristics	of	

Or

(a) Derive the efficiency and ripple factor of a full-wave rectifier.

UJT. Write two advantages of UJT. 3+1=4

- (b) Describe in brief the two-transistor analogy of SCR. Also write two applications of SCR. 3+1=4
- 3. (a) What is voltage regulation? Explain how Zener diode can be used as voltage regulator. 1+3=4
 - (b) Discuss how PIN diode can be used as high-frequency switching device.

Or

- (a) With necessary diagram, explain the construction and working of liquid crystal display. 2+3=5
- (b) How is population invertion created in laser diode?

- 4. (a) What are power amplifiers? Show that in a class B push-pull amplifier, the power efficiency is 78.5%.
 - (b) Show the power diagram of transformer coupled class A power amplifier, and locate its Q-point.

Or

- (a) With a neat diagram, explain the working of double-tuned amplifier.

 Discuss its frequency response. 3+2=5
- (b) A double-tuned circuit operates at an operating frequency of 10 MHz having coefficient of coupling of 0.02. Determine the bandwidth.
- 5. (a) What are the characteristics of an ideal operational amplifier? Why is voltage at the summing point of a negative feedback OP-AMP reduced almost to zero?

 3+2=5
 - (b) Write the equation for common-mode rejection ratio (CMRR) and also mention some importances of CMRR. 1+1=2

2