EL/III/EC/05

2019

(CBCS)

(3rd Semester)

ELECTRONICS

(Electronic Devices and Amplifiers)

Full Marks: 75

Time : 3 hours

Simple calculator may be used in this paper

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1 \times 10=10$

)

1. The constant region of JFET lies between

- (a) cut-off and saturation ()
- (b) cut-off and pinch-off (
- (c) 0 and I_{DSS} (
- (d) pinch-off and breakdown ()

)

- **2.** A MOSFET uses the electric field of a/an _____ to control the channel current.
 - (a) capacitor ()
 - (b) battery ()
 - (c) generator ()
 - (d) inductor ()

[Contd.

3. The intrinsic stand-off ratio of a UJT lies between

)

- (a) 0.15 and 0.82 (
- (b) 0.15 and 0.28 ()
- (c) 0.51 and 0.82 ()
- (d) 0.28 and 0.51 ()

4. The control element of an SCR is

- (a) cathode ()
- *(b)* anode ()
- (c) cathode supply ()
- (*d*) gate ()
- 5. In a class—A amplifier, conduction extends over 360° because *Q*-point is
 - (a) located on load line ()
 - (b) located near saturation point ()
 - (c) centered on the load line ()
 - (d) located at cut-off point ()
- 6. Crossover distortion occurs in which of the following amplifiers?
 - (a) Class—A ()
 - (b) Class—AB ()
 - (c) Class—C ()
 - (d) Push-pull ()

7. The main use of an emitter follower is as

- (a) power amplifier ()
- (b) impedance matching device ()
- (c) low-input impedance circuit ()
- (d) follower of base signal ()

8. The smallest of the *h*-parameter of a transistor is

- (a) h_i ()
- (b) h_r ()
- (c) h_0 ()
- $(d) h_f$ ()

9. An inverting amplifier has $R_f = 2$ M and $R_i = 5$ k. Its scale factor is

- (a) 400 ()
- *(b)* 401 ()
- *(c)* 10³ ()
- (d) 1000 ()

10. The output of a particular op-amp increases 8 V in 12 s. The slew rate is

- (a) 90 V/s ()
- (b) 0.67 V/s ()
- (c) 1.5 V/s ()
- (d) 24 V/s ()

SECTION-B

(Marks: 15)

Answer the following questions :

1. What are the differences between a JFET and a bipolar transistor?

OR

The following readings were obtained experimentally from a JFET :

V_{GS}	0 V	0 V	– 0·2 V
V_{DS}	7 V	15 V	15 V
I_D	10 mA	10·25 mA	9·65 mA

Determine (a) a.c. drain resistance, (b) transconductance and (c) amplification factor.

EL/III/EC/05/60

[Contd.

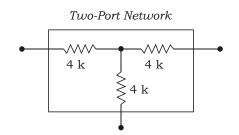
3×5=15

2. Explain firing and triggering in SCR.

OR

Explain intrinsic standoff ratio and interbase resistance of UJT.

3. Explain with a neat diagram, how the transformer load helps to achieve high-efficiency impedance matching in a power amplifier.


OR

How are the power amplifiers classified on the basis of mode of operation?

4. In an *RC*-coupled amplifier, the output voltage is 5 volts for a sinusoidal input of 5 mV. Determine the absolute voltage gain and the decibel voltage gain.

OR

Find the *h*-parameter for the two-port network shown below :

5. Derive the expression for voltage gain of an operational amplifier in non-inverting and inverting modes.

OR

Define the terms 'slew rate' and 'CMRR' of an op-amp.

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

- **1.** (a) Explain the construction and working of a JFET.
 - (b) State and explain JFET parameter. Also establish the relationship between them.

EL/III/EC/05/60

[Contd.

OR

- (a) Give the constructional details and working of depletion-type MOSFET.
 Also show its output characteristics.
 6+2=8
 - (b) Write down any four applications of FET. 2
- **3.** (a) Explain the working of SCR from its equivalent circuit. Also write forward and reverse characteristics of SCR. 5+2=7
 - (b) Explain 90° phase control in SCR.

OR

- **4.** (a) Explain the construction and operation of UJT. Also write its advantages. 4+2=6
 - (b) What is a rectifier? Explain with a diagram how semiconductor diode can be used as a half-wave rectifier. 1+3=4
- **5.** (a) Define heat sink. Prove that the maximum collector efficiency of transformer-coupled class—A power amplifier is 50%. 1+2=3
 - (b) Briefly explain how to eliminate crossover distortion in class—B push-pull amplifier. A transformer-coupled load class—B push-pull amplifier uses two transistors rated 8 W each. What is the maximum power output that can be obtained at the load? 2+2=4
 - (c) What is thermal runaway? With a block diagram, explain all the stages of a practical power amplifier. 1+2=3

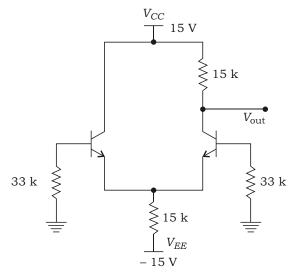
OR

6. (a) For the optimally-biased transformer-coupled class—A amplifier connected to a 12 V battery, if the maximum collector current change is 100 mA, find the power transferred to a 5 loud speaker if it is (i) directly connected to the collector and (ii) transformer coupled for maximum power transference. Also find the turn ratio of the transformer.

3

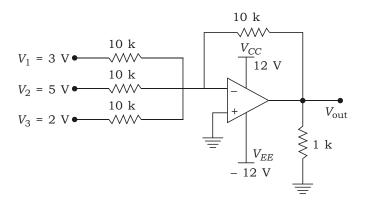
- (b) Mention the features of power amplifier. How does it differ from voltage amplifier? 2+1=3
- (c) Explain the working principle of a tuned amplifier circuit. Why are class—C power amplifiers not used for audio-frequency work but suitable for RF amplifier?
 3+1=4
- **7.** (a) What is a two-port network? For a two-port network, derive the general formula of *h*-parameter for (*i*) current gain, (*ii*) voltage gain, (*iii*) input impedance and (*iv*) output impedance.
 - *(b)* Show the transistor amplifier in CE arrangement. The *h*-parameters of transistor are as under :

 h_{ie} 1500 ; h_{fe} 50 ; h_{re} 4 10 ⁴ ; h_{oe} 5 10 ⁵


Find *(i)* a.c. input impedance of the amplifier, *(ii)* voltage gain and *(iii)* output impedance. 3

(c) Explain with supporting diagram, how an auto-transformer can be used as both step-up and step-down transformer.3

OR


- 8. (a) With a neat diagram and relevant frequency response, explain the working of RC-coupled amplifier. What are its advantages and disadvantages?
 2+2=4
 - (b) In an amplifier, the maximum voltage gain is 2000 and occurs at 2 kHz.
 It falls to 1414 at 10 kHz and 50 kHz. Find (i) bandwidth, (ii) lower cut-off frequency and (iii) upper cut-off frequency.
 3
 - (c) Sketch the frequency response of a transformer-coupled amplifier.
 Explain with circuit diagram, why it is used in the final stage of a multistage amplifier.
 2+1=3
- **9.** (*a*) List the characteristic of an ideal op-amp. Explain the concept of virtual ground. 3+1=4
 - (b) Define common-mode and differential-mode signals. Describe a twotransistor terminology of basic operational amplifier. 2+2=4

(c) The transistors shown below are identical with dc 100. Find the output voltage :

- 10. (a) Explain clearly how op-amp can be used as (i) subtractor, (ii) integrator,
 (iii) differentiator and (iv) voltage follower circuit.
 - (b) Determine the output voltage for the summing amplifier shown below : 2

* * *

EL/III/EC/05/60