2018	
(Pre-CBCS)	•
(2nd Semester)	
ELECTRONICS	
SECOND PAPER	
(Semiconductor Physics)	
(Revised)	
Full Marks: 55	
Time: 2½ hours	
(PART : A—OBJECTIVE)	
(<i>Marks</i> : 20)	
The figures in the margin indicate full marks for the questions	
SECTION—A	
(Marks : 5)	
Tick (✓) the correct answer in the brackets provided:	1×5=5
1. Diffusion capacitance is observed in a $p-n$ junction diode when	
(a) reverse biased ()	
(b) forward biased ()	
(c) leakage current is small ()	
(d) leakage current is large ()	
/383	

2.	The	ripple	facto	rofa	full-v	wave re	ectifier is						
	(a)	0.48	()				(b)	0·81 1·11	()	
	(c)	1.21	()				(d)	1.11	()	
3.	The	curren	t am	plifica	tion f	actor o	a _{dc} is giv	en by	y				
	(a)	$\frac{I_C}{I_D}$	()					$\frac{I_C}{I_B}$ $\frac{I_B}{I_C}$	()		
	(c)	$\frac{I_B}{I_E}$	()				(d)	$\frac{I_B}{I_C}$	()		
	Q-p (a) (b) (c) (d) The (a) (b) (c)	oint of near sa near c	a circ atura ut-off centr t on sion (tion point the loof hie	ooint the load pad lir	ted (() ad line ne	()		ing is	obtair	ned	when	the
						SEC	CTION—B						
						(Ma	arks : 15))					
Ans	wer	any <i>five</i>	ques	tions	of the	followi	ng:						3×5=15
1.	Giv	e the m	echa	nism	of hol	le curre	ent flow	in a	semico	nducto	or.		
2.	Con	_	ne dif	ferend	es be	tween	an ordina	ary ju	nction	diode	an	d a Ze	ener

3. Write a short note on the leakage currents in a transistor for CB and CE configurations.

4. Write a note on the characteristics of class A and class B amplifiers.

- **5.** What are the advantages and disadvantages of transformer-coupled amplifier?
- 6. Why do conduction band electrons possess higher energy than those electrons in the valence band?
- 7. Define β of a transistor. Show that $I_E = (1 + \beta)I_B$.
- 8. Explain the formation of n-type semiconductor.

(PART : B-DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- 1. (a) Classify solids in terms of the energy band diagram. Explain the formation of p-type semiconductor materials.
 - (b) What is the significance of a potential barrier in a diode?

OR

- (a) Write down the diode equation. Explain with suitable diagram, the V-I characteristics of a p-n junction diode.
- (b) What is space-charge capacitance of a p-n junction? What is the typical value of space-charge capacitance?
- 2. (a) Describe briefly the working of a p-n junction full-wave rectifier. Give the expression for efficiency of a full-wave rectifier. 3+1
 - (b) Describe briefly the working of a capacitor filter.

OR

- (a) What is ripple factor? Derive the value of ripple factor for a half-wave semiconductor diode.
- (b) Explain how Zener diode maintains constant voltage across the load.

2

3

3.	(a)	Define α of a transistor. Show that $\beta = \frac{\alpha}{1-\alpha}$, where the symbols have	
		their usual meanings, in a transistor.	-3
	(b)	Explain the working of a p-n-p transistor.	3
		OR	
	(a)	Explain with diagram the input, output and current transfer characteristics of CE configuration in an <i>n-p-n</i> transistor.	5
	(b)	What is thermal runaway?	2
4.	(a)	Explain in brief, the frequency response curve of an amplifier. What is the resonant frequency?	· 1
	(b)	Write down the steps for construction of d.c. load line. Also explain the terms cut-off and saturation point.	·2
		OR	
	(a)	Describe class A, class B, class C and class AB of amplifiers. Illustrate your answer with suitable diagrams.	5
	(b)	Define bandwidth in terms of dB for an amplifier having maximum voltage gain 100.	2
5 .	(a)	Draw a hybrid equivalent circuit of CE transistor.	1
	(b)	Deduce an expression for input impedance, current gain and voltage gain in CE transistor.	+2
		OR	
	(a)	$h_{re} = 2 \times 10^{-4}$ and $h_{oe} = 2 \times 10^{-4}$ mho. The transistor is used in a CE	
		amplifier with a load resistance of $5 \text{ k}\Omega$ and a source resistance of $10 \text{ k}\Omega$. Calculate the current gain, voltage gain and input impedance.	5
	(b)	Explain the frequency response curve of transformer-coupled amplifier.	2

4