EL/II/EC/03

2021

(CBCS)

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

Full Marks: 75

Time : 3 hours

INSTRUCTIONS TO CANDIDATES

(Please read the instructions carefully before you start writing your answers)

- 1. Questions should be attempted as per instructions.
- 2. Do not copy the Questions. Indicate the Section and Question No. clearly while attempting the answer.
- 3. For Multiple choice answer, candidate should indicate the **Question No.**, **Sub. No.**, (if any) and the correct answer. For example :
 - 1. Name the State capital of Mizoram.
 - (a) Lunglei
 - (b) Aizawl
 - (c) Champhai

Candidate should provide answer as—Q. No. 1 : (b) Aizawl [Candidate should **avoid** writing only (b)]

4. The figures in the margin indicate full marks for the questions.

(SECTION: A—OBJECTIVE)

(*Marks* : 10)

Choose the correct answer from the options provided :

 $1 \times 10 = 10$

- 1. In insulator, the energy gap between valence and conduction band is
 - (a) very large
 - (b) zero
 - (c) very small
 - (d) less than one
- 2. The most commonly used semiconductor is
 - (a) germanium
 - (b) silicon
 - (c) carbon
 - (d) sulphur

3. The battery connections required to a forward biased p-n junction are

- (a) + ve terminal to p and ve terminal to n
- (b) ve terminal to p and ve terminal to n
- (c) ve terminal to p and ve terminal to n
- (d) ve terminal to p and ve terminal to n
- **4.** A reverse biased *p*-*n* junction has
 - (a) very narrow depletion region
 - (b) almost no current
 - (c) very low resistance
 - (d) large current flow

- 5. Breakdown occurs in Zener diode under
 - (a) forward bias
 - (b) unbiased condition
 - (c) reverse bias
 - (d) both forward and reverse bias
- **6.** When the reverse bias voltage increases in varactor diode, the depletion layer
 - (a) increases
 - (b) stays the same
 - (c) decreases
 - (d) becomes zero
- **7.** The leakage current I_{CBO} flows in
 - (a) the emitter, base and collector leads
 - (b) the emitter and base leads
 - (c) the emitter and collector leads
 - (d) the base and collector leads
- **8.** The emitter base of a given transistor is forward biased and its collector base is reverse biased. If the base current is increased, then its
 - (a) $I_{\rm C}$ will decrease
 - (b) $V_{\rm CE}$ will increase
 - (c) $I_{\rm C}$ will increase
 - (d) $V_{\rm CC}$ will increase
- **9.** When the signal is applied to the transistor amplifier, the ratio of change of collector current to the ratio of change of base current is called
 - (a) a.c. current gain
 - (b) base current amplification factor
 - (c) emitter current amplification factor
 - (d) d.c. current gain

10. In determining the load line, for $I_{\rm C}$ 0

- (a) $V_{\rm CE}$ $V_{\rm CB}$
- (b) V_{CE} 0
- (c) $V_{\rm CE}$ $V_{\rm CC}$
- (d) $V_{\rm CC}$ 0

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following questions :

1. Explain the capacitive effects of junction diode.

OR

Discuss the formation of hole current with suitable diagram.

2. What are the advantages of full-wave rectification over half-wave rectification?

OR

A crystal diode having internal resistance r_f 20 is used for half-wave rectification. If the applied voltage V 50 sin t and load resistance R_L 800, find the efficiency of rectification.

3. Explain how Zener diode can be used as a peak clipper.

OR

What do you mean by thermal runaway in a transistor?

4. Write a short note on the leakage currents in a transistor for CE configuration.

OR

What is *Q*-point for any transistor configuration?

5. Write a note on the characteristics of class A amplifier.

OR

Define bandwidth of an amplifier.

[Contd.

3×5=15

(SECTION : C—DESCRIPTIVE)

(Marks:50)

Answer the following questions :

1. (a) What are intrinsic and extrinsic semiconductors? How is p-type of extrinsic semiconductors formed? 2+3=5(b) Explain the V-I characteristics of p-n junction diode with suitable 4 diagrams. (c) What is Zener breakdown? 1 OR **2.** (a) Discuss the behavior of a p-n junction under forward and reverse biasing. 2+2=4(b) Explain the salient features of Bohr's atomic model. 4 Which is the most commonly used semiconductor and why? 2 (c)**3.** (a) What do you understand by the d.c. and a.c. resistances of a semiconductor diode? How will you determine them? 2+3=5Explain with a diagram how semiconductor diode can be used as a (b) full-wave rectifier. Show that its maximum efficiency is 81.2%. 2+3=5OR **4.** (a) What is ripple factor? Derive the value of ripple factor for half-wave rectifier. 1+3=4(b) Describe the filtering action of capacitor-input filter. 2 Explain different equivalent circuits of a semiconductor diode. 4 (c)**5.** (a) Explain how Zener diode maintains constant voltage across the load in the breakdown region. 2 (b) What is PIN diode? Write its two advantages over the normal p-n3 junction diode. (c) What is tunnel diode? Explain the *V*-*I* characteristics of a tunnel diode. 1+4=5

5

[Contd.

10×5=50

/19

OR

6.	(a)	What is LED?	2
	(b)	Explain photo-diode operation.	3
	(c)	What is Shockley diode? Explain its working.1+4=	=5
7.	(a)	State and explain the transistor biasing for normal operation.	2
	(b)	What are the important biasing rules?	3
	(c)	Explain with diagram, the input, output and current transfer characteristics of CE configuration in an $n-p-n$ transistor.	5
OR			
8.	(a)	Define and for a transistor.	2
	(b)	Discuss the working of $n-p-n$ transistor with diagram.	3
	(c)	Describe with suitable diagram, the transistor static characteristics of CE configuration. Mention its difference with CB characteristics. 3+2=	=5
9.	(a)	What is frequency response of an amplifier?	2
	(b)	Explain how transistor amplifies.	3
	(c)	Describe class A and class B of amplifiers. Illustrate your answer with suitable diagrams.	5
OR			
10.	(a)	Why is common collector amplifier called emitter-follower?	2
	(b)	Which amplifier configuration is most popularly used and why?	3
	(c)	Derive the expressions for input resistance, output resistance, current gain, voltage gain and power gain of a CE amplifier.	5

6