2021

(CBCS) (5th Semester) **ELECTRONICS**

FIFTH PAPER [Transmission Line and Radar System]

> Full Marks: 75 Time: 2 hours

INSTRUCTIONS TO CANDIDATES

(Please read the instructions carefully before you start writing your answers)

- 1. Questions should be attempted as per instructions.
- 2. Do not copy the Questions. Indicate the Section and Question No. clearly while attempting the answer.
- 3. For Multiple choice answers, candidate should indicate the Question No., Sub. No., (if any) and the correct answer. For example :
 - 1. Name the State capital of Mizoram.
 - (a) Lunglei
 - (b) Aizawl
 - (c) Champhai

Candidate should provide answer as—Q. No. 1 : (b) Aizawl [Candidate should avoid writing only (b)]

- Section B Answer to Short Answer should be limited to One Page only.
- 5. The figures in the margin indicate full marks for the questions.

2021

(CBCS) (5th Semester) **ELECTRONICS**

FIFTH PAPER [Transmission Line and Radar System]

Full Marks: 75 Time: 2 hours

The figures in the margin indicate full marks for the questions

SECTION : A – OBJECTIVE

(Marks: 30)

Choose the correct answer from the following:

1x30=30

- 1. The leakage current in the transmission lines is referred to as the
 - a) Resistance
 - b) Radiation
 - c) Conductance
 - d) Polarisation
- 2. The coaxial line consists of
 - a) Conductors
 - b) Dielectric
 - c) Conductor with dielectric
 - d) Two conductors with dielectric
- 3. The unit of attenuation constant is
 - a) Decibel
 - b) Bel
 - c) Neper
 - d) No unit
- 4 The propagation constant of a wave with attenuation and phase constant given by 2 and 3 respectively is
 - a) 2 3j
 - b) 3 2j
 - c) 2 + 3j
 - d) 3 + 2j

5. The velocity and phase constant relation is given by

- a) V = ω/β
- b) V = $\omega\beta$
- c) V = β/ω
- d) V $\omega\beta = 1$
- 6. For a lossless line, which of the following is true?
 - a) $\gamma = j\beta$
 - b) $\gamma = \alpha$
 - c) $\gamma = \alpha + j\beta$
 - d) $\gamma = \alpha * j\beta$
- 7. Expression for a voltage reflection co-efficient (ρ) in terms of load impedance and characteristics impedance is:

a)
$$\frac{(Z_R - Z_0)}{(Z_R + Z_0)}$$

b)
$$\frac{(Z_R + Z_0)}{(Z_R - Z_0)}$$

c)
$$\frac{(Z_R \times Z_0)}{(Z_R + Z_0)(Z_R - Z_0)}$$

d)
$$\frac{(Z_R + Z_0)}{(Z_R \times Z_0)(Z_R - Z_0)}$$

- 8. Input impedance of a short-circuited transmission line is:
 - a) $-j Z_0 \tan\beta l$ b) $j Z_0 \tan\beta l$ c) $j Z_0 \cot\beta l$ d) $-j Z_0 \cot\beta l$
- 9. If a transmission line of a characteristic impedance 50 Ω is terminated with a load impedance of 100 Ω , then the reflection co efficient is:
 - a) 0.33
 - b) 0.66
 - c) 1.66
 - d) 0.22
- 10. We say a transmission line is matched when:
 - a) $Z_R = Z_0$
 - b) $Z_R = \sqrt{Z_0}$
 - c) $R_{\rm L} = Z_0/2$
 - d) $Z_{R} = 2Z_{0}$

- 11. The maximum power that can be transmitted over a line without danger of insulation breakdown is called _____.
 - a) power rating
 - b) power loss
 - c) power capacity
 - d) reflection loss
- 12. Expression for Voltage Standing Wave Ratio in terms of reflection coefficient is:

a)
$$\frac{1-|\rho|}{1+|\rho|}$$

b)
$$\frac{1}{|\rho|}$$

c)
$$\frac{1}{1+|\rho|}$$

d)
$$\frac{1+|\rho|}{1-|\rho|}$$

- 13. Which of the following is the basic function of the antenna?
 - a) Converts photons to electrons.
 - b) Converts electrons to photons.
 - c) Converts electrons to neutrons.
 - d) Both a and b.
- 14. Which of the following is the correct statement for isotropic radiation?
 - a) It is a point source radiator.
 - b) It radiates uniformly in all directions.
 - c) Maintains uniform intensity.
 - d) All the above.
- 15. Radiation patterns can be represented in terms of _____ types.
 - a) Field patterns.
 - b) Power patterns.
 - c) Both a and b.
 - d) Direction pattern.
- 16. The field strength of Hertzian dipole antenna can be calculated as:

a)
$$E = \frac{60\pi L_e I}{\lambda r} sin\theta$$

b) $E = \frac{60L_e I}{\pi \lambda r} sin\theta$
c) $E = \frac{60\pi L_e}{I\lambda r} sin\theta$
d) $E = \frac{60\pi L_e \lambda}{Ir} sin\theta$

- 17. Directors are used to increase ______ of the Yagi-Uda antenna.
 - a) Directivity
 - b) Gain
 - c) Back lobe
 - d) Reflection away from the radiation
- 18. Hertzian dipole carries which type of current throughout its length while radiating?
 - a) Varying
 - b) Constant
 - c) Depends on type of polarization
 - d) Depends on radiation resistance
- 19. Which of the following part of a pulsed radar system demodulates the signal obtained at the output of the IF amplifier?
 - a) Modulator
 - b) Detector
 - c) Transmitter
 - d) Duplexer
- 20. If the maximum range is to be doubled in a radar system, the peak transmitted power has to be increased by a factor of
 - a) 2
 - b) 4
 - c) 8
 - d) 16
- 21. The average power of a pulsed radar transmitter is given by
 - a) the product of peak power of the pulse and the duty cycle.
 - b) peak power divided by the number of pulses repeated in one second.
 - c) peak power divided by the duty cycle.
 - d) sum of the peak power and the duty cycle
- 22. The radar in which both transmission and reception is done using the same antenna are called:
 - a) Monopole radar
 - b) Dipole radar
 - c) Monostatic radar
 - d) Bistatic radar

23. The term radar cross section defines the:

- a) Scattering ability of the target
- b) Power radiating ability of the radar
- c) Amount of energy scattered by unwanted objects
- d) Cross section of radar area through which energy is emitted
- 24. When a pulsed power P_t is transmitted by an antenna, the power density at the target is given by the expression:

a)
$$\frac{P_t}{4\pi R^2}$$

b) $\frac{P_t}{4\pi R^3}$
c) $\frac{A_p P_t}{4\pi R^2}$
d) $\frac{A_p P_t}{4\pi R^3}$

- 25. For an elliptical path, the value of eccentricity (e) is always lie in between 0 and 1 is:
 - a) 0 < e < 1.
 - b) 0 > e > 1.
 - c) 0 < e < 2.
 - d) 0 > e > 2.
- 26. Which of the following orbit is much close to earth?
 - a) LEO
 - b) GEO
 - c) MEO
 - d) Both a and b
- 27. The name of the world's first true communications satellite launched in 1962 by the American telecommunications giant AT&T was
 - a) Telstar
 - b) Westar
 - c) Molniya
 - d) Amos
- 28. A communication satellite uses ______ to transmit signal.
 - a) Antenna
 - b) Transponder
 - c) Oscillator
 - d) Modulator
- 29. Which of the following are the main components in satellite communication?
 - a) Uplink
 - b) Downlink
 - c) Transponder
 - d) All the above

30. GEO is _____ away from the earth.

- a) 35,863 km
- b) 8,000 18,000 km
- c) 500 1,500 km
- d) 1000 km

SECTION : B – SHORT ANSWER

(Marks: 45)

Answer the following questions in not more than 1 (one) page each, choosing 3 (three) questions from each unit.

3x15=45

Unit I

- 1. Explain the distributed parameters of a transmission line.
- 2. Explain the different types of Transmission lines.
- 3. From the equation of propagation constant (γ), obtain phase constant (β) and attenuation constant (α)
- 4. A cable pair is loaded with 6 mH coils, at intervals of 0.9 km. for operation at frequencies upto 16 kc/s. At this frequency, the primary constants of the cable are:

R = 72 ohm. L = 1.0 mH, C = 0.065 μ F, G = 50 μ mho, all per loop kilometer and the effective resistance of each loading coil is 4.5 ohm. Estimate the approximate attenuation per mile of the loaded cable.

Unit II

- 5. Derive the equation of input impedance of dissipation less transmission line terminated with any impedance.
- 6. Obtain the input impedance when the line is terminated by infinite impedance.
- 7. Derive the expression for Voltage Standing Wave Ratio in terms of reflection co-efficient. What would be the reflection coefficient if the standing wave ratio is 4.
- 8. Write a short note on power and power capacity on a transmission line

Unit III

- 9. What are the advantages, disadvantages and applications of folded dipole antenna?
- 10. Explain a Hertzian dipole.
- 11. Explain the radiation pattern of Yagi-Uda antenna.
- 12. What are the properties of Vertical antenna?

Unit IV

- 13. Explain a Pulse Radar System.
- 14. What are the factors affecting maximum range of radar?
- 15. Explain briefly an average power over one pulse repetition interval.
- 16. Calculate the maximum range of a radar system which operates at 3 cm with a peak pulse power of 500 kW, if its minimum receivable power is 10⁻¹³ W, the capture area of its antenna is 5 m², and the radar cross-sectional area of the target is 20 m².

Unit V

- 17. Explain antenna look angle.
- 18. Explain Kepler's first law?
- 19. Describe briefly limits of visibility of satellite.
- 20. Determine Azimuth angle for the situation given below. Latitude of the earth station (l_E) = -20 deg Longitude of earth station (f_E) = 30 deg, Longitude of sub satellite point f_s = + 30 deg; height = 35,786 km radiuses of earth = 6378.14 km.

***** End of question *****