(2)

2017

(3rd Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-305

(Computer Organization and Architecture)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

- **1.** (a) Using 4×1 multiplexers, design a common bus system for four registers and explain how it works.
 - (b) Write the graphic symbol for three-state buffer.

Or

(c) Explain different types of shift microoperations with suitable examples.

(d)	What	is	а	bin	ary	a	dder?	Consti	ruct	a
	circuit	t di	iag:	ram	for	а	4-bit	binary	add	er
	using	ful	l-a	dder						

- **2.** (a) Write and explain the three basic computer instruction code formats.
 - (b) Explain four phases of an instruction cycle.

Or

- (c) Explain the categories of computer programs with examples.
- (d) Explain the fields of an assembly language program.
- **3.** (a) Explain one-address, two-address and three-address instructions.
 - (b) Write the major characteristics of RISC architecture.

Or

- (c) Describe any four addressing modes. 6
- (d) Write the major characteristics of CISC architecture.
- **4.** (a) Discuss the three modes of data transfer to and from peripherals.
 - (b) What is asynchronous data transfer? Explain by giving a suitable diagram.

8G/267a

(Turn Over)

8

2

8G**/267a**

(Continued)

4

6

4

7

3

6

4

4

6

Or

	(c)	Explain Direct Memory Access (DMA) by giving a suitable block diagram.										
	(d)	Write the flowchart of the communication of CPU and IOP.										
5.	(a)	Write the block diagram and function table of 128×8 RAM chip and explain how it works.	8									
	(b)	What is content addressable memory?										
		Or										
	(c)	Explain associative, direct and set-associative mapping by giving a suitable diagram.	10									

Subject Code : III/	BCA/305	Booklet No. A					
To be filled in by		Date Stamp					
Subject	Commerce / xam., 2017						
Paper		To be filled in by the Candidate					
INSTRUCTIONS TO	CANDIDATES	DEGREE 3rd Semester					
 The Booklet No. of the quoted in the answer descriptive type quersa. 	er script meant for	(Arts / Science / Commerce /) Exam., 2017					
2. This paper should be and submitted with of the commence Examination.		Roll No					
3. While answering the	-	Subject					
booklet, any cuttir writing or furnishin		Paper					
answer is prohibited if required, should		Descriptive Type					
the main Answer I	Book. Instructions	Booklet No. B					
given in each que followed for answer only.							
·	Signature of	Sign at was of					
Signature of Scrutiniser(s)	Examiner(s)	Signature of Invigilator(s)					

/267

2017

(3rd Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-305

(Computer Organization and Architecture)

(PART : A—OBJECTIVE)

(Marks : 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(*Marks*: 15)

I. Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1.	The	micro	opei	ration		that	t	spe	cify	7	bina	ιry
	opera	itions f	or st	rings	of	bits	sto	red	in	reg	ister	is
	called	1										

- (a) shift microoperations ()
- (b) arithmetic microoperations ()
- (c) logic microoperations ()
- (d) data microoperations ()

/267

2.	The register that holds an address for the memory unit is called										
	(a)	DAR	()							
	(b)	MAR	()							
	(c)	IR	()							
	(d)	PC	()							
3.	3. A group of bits that instruct the computer perform a specific operation is called										
	()										
	(b)	bit code	2	()						
	(c)	instruc	tion c	ode	()						
	(d)	byte co	de	()						
4.		instruct memory			tores the content of AC into						
	(a)	LDA	()							
	(b)	STA	()							
	(c)	BUN	()							
	(d)	ISZ	()							
III/BCA/3	305 /2	67									

5.	_	ut or output devices attached to the computer also called
	(a)	peripherals ()
	(b)	DMA ()
	(c)	I/O strobe ()
	(d)	controllers ()
6.		standard binary code for the alphanumeric racters is
	(a)	HEX ()
	(b)	B-coding ()
	(c)	ASCII ()
	(d)	EBBDIC ()
7.	Whi	ch of the following is an auxiliary memory?
	(a)	RAM ()
	(b)	Register ()
	(c)	Cache memory ()
	(d)	Magnetic disk ()

8.	When a program attempts to reference a page th is still in auxiliary memory, it is called											
	(a) page miss ()											
	(b) page hit ()											
	(c) page fault ()											
	(d) paging ()											
9.	A set of common instructions that can be used in a program many times is called											
	(a) assembly language ()											
	(b) subroutine ()											
	(c) program loops ()											
	(d) common instruction ()											
10.	The collection of all status bit conditions in the CPU is called											
	(a) program status word ()											
	(b) status bits ()											
	(c) bit ratio ()											
	(d) program bits ()											
III/BCA/3	805 /267											

II.	Indicate	True	(T) or	r <i>False</i>	(F)	by	а	Tick	(✓)	mark	:	
											$1 \times 5 = 5$	5

1. $R1\leftarrow R2$ denotes transfer of information from R2 to R1.

(T / F)

2. Effective addresses are defined as the address of the operand in a computation-type instruction.

(T / F)

3. A status command is issued to activate the peripheral and to inform it what to do.

(T / F)

4. An address in main memory is called physical address.

(T / F)

5. Translation of symbolic program into binary is done by compiler.

(T / F)

(6)

SECTION—II

(*Marks*: 10)

III. Answer the following questions: $2 \times 5 = 10$

1. What is register transfer language?

2. Differentiate between machine language and assembly language.

3. Distinguish between data transfer instruction and data manipulation instruction.

(9)

4. What is memory-mapped I/O?

5. What is a bootstrap-loader?

8G—210**/267** III/BCA/305