2016

(5th Semester)

CHEMISTRY

FIFTH PAPER (CHEM-351)

(Organic Chemistry—II)

Full Marks: 55

Time: 21/2 hours

(PART: B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

1. (a) What is Hückel rule? Which of the following species satisfy Hückel rule? Explain briefly. 1+2=3

(b) Complete the following reactions with suitable mechanism: $2 \times 2 = 4$

(i)
$$\bigcirc$$
 CI $+ \text{NaNH}_2$ $\xrightarrow{\text{liq. NH}_3}$?

OH \longrightarrow CHCl₃/NaOH \longrightarrow ?

OR

2. (a) "o-nitrophenol has much lower boiling point than its *m*- and *p*-isomers." Explain.

Arrange the following in their increasing order of acidity. Explain. 2 phenol, p-chlorophenol, p-cresol

Complete the following reactions with suitable mechanism: $2 \times 2 = 4$

(i) Phenol +
$$\phi$$
COCl \longrightarrow ? $\xrightarrow{\text{AlCl}_3}$?

(ii)
$$C1 \longrightarrow FeCl_3 \longrightarrow ?$$

- **3.** (a) Give one chemical test to distinguish between aldehydes and ketones.
 - Explain keto-enol tautomerism by using suitable example.
 - Write the product(s) of the following reactions with suitable mechanism: 2×2=4

(i)
$$\phi$$
CHO + (CH₃CO)₂O $\xrightarrow{\text{CH}_3\text{COONa}} ?$

$$\xrightarrow{O} \qquad \qquad \xrightarrow{A} \xrightarrow{-\text{H}_2\text{O}} ?$$
(ii) ϕ —C—CH₃ $\xrightarrow{\text{CH}_3\text{CO}_3\text{H}} ?$?

(ii)
$$\phi$$
—C—CH₃ $\xrightarrow{\text{CH}_3\text{CO}_3\text{H}}$?

OR

- **4.** (a) How will you obtain CH₃COCH₃ from CH₃COCl? Give chemical equation.
 - (b) Arrange the following in their increasing order of acidity. Explain. 2
 - *p*-NO₂-benzoic acid, *p*-methylbenzoic acid, o-hydroxy benzoic acid, benzoic acid
 - Complete the following reactions with suitable mechanism: $1\frac{1}{2} \times 2 = 3$
 - $CH_3CH=CH_2 \xrightarrow{1) O_3} ?$
 - $CH_3COOH + C_2H_5OH \xrightarrow{H^+}$?

- Explain Hofmann's method for the separation of a mixture of 1°, 2° and 3°-amines.
 - Arrange the following in their decreasing order of basicity. Explain. $2\frac{1}{2}$ NH_3 , $(CH_3)_2NH$, CH_3NH_2 , $(CH_3)_3N$
 - What are active methylene compounds? Give an example. $1\frac{1}{2}$

OR

6. (a) Complete the following reactions: $1 \times 2 = 2$

(i)
$$\phi$$
-NH₂ + ϕ COCl - NaOH ?

(ii)
$$R - NH_2 + CHCl_3 + 3KOH \longrightarrow ?$$

Carry out the following conversion:

$$2\frac{1}{2} \times 2 = 5$$

3

- $CH_3COCH_2COOC_2H_5 \longrightarrow CH_3COCH_2CH_3$ (Ethylacetoacetate) (Butan-2-one)
- $CH_2(COOC_2H_5)_2 \longrightarrow CH_3CH_2COOH$ (Diethylmalonate) (Propanoic acid)

1

2

7. (a) Complete the following reactions with suitable mechanism (any two): $2\frac{1}{2} \times 2 = 5$

(i)
$$\bigcirc$$
 + CH₃COCl $\xrightarrow{1) \text{AlCl}_3}$?

(ii) +
$$COOC_2H_5 \xrightarrow{NaOC_2H_5} ?$$

- (iii) $Ph_3P + CH_3Br \xrightarrow{NaH} ? \xrightarrow{\phi CHO} ?$
- (b) Explain the $A_{AC}2$ mechanism for the hydrolysis of an ester.

OR

8. (a) Which is the major product and why? 2

(b) Complete the following reactions with suitable mechanism (any two): $2\frac{1}{2}\times2=5$

(i)
$$O \xrightarrow{1) OH} O$$

$$O \xrightarrow{1) OH} O$$

(ii)
$$O-CH_2CH=CH_2$$

$$\longrightarrow \Delta \qquad ?$$

$$\longrightarrow O \qquad \qquad NH_2OH, HCl \qquad ? \qquad 1) PCl_5/Ether \qquad ?$$

- **9.** (a) Draw the resonance molecular orbital picture of pyrrole.
 - (b) Complete the following reactions with suitable mechanism (any two): $2\frac{1}{2} \times 2=5$

(i)
$$(i)$$
 $SO_3/Pyridine > ?$

(ii)
$$\bigcirc \qquad \bigcirc \qquad + \text{CH}_{3}\text{I} \xrightarrow{\text{DMF}} ?$$

(iii)
$$\bigcirc$$
 + Br₂ $\xrightarrow{\text{H}_2\text{SO}_4}$ \Rightarrow 7

OR

10. (a) How will you prepare quinoline by Skraup method? Give chemical equation. 3

G7/136a

(Turn Over)

2

G7/136a

(Continued)

- (b) Electrophilic substitution of indole takes place primarily at C-3 rather than C-2. Explain.
- (c) Complete the following reaction (mechanism not required):

$$\phi\text{-NHNH}_2 + \text{CH}_3\text{COCOOH} \longrightarrow A \xrightarrow{\Delta} A \xrightarrow{\Delta} B$$

$$\xrightarrow{\Delta, -\text{CO}_2} C \xrightarrow{\Delta, \text{ZnCl}_2} D$$

2

Subject Code : $f V$	CHEM (v)	Booklet No. A			
<u> </u>	j	Date Stamp			
To be filled in by t					
DEGREE 5th Semes	ster				
(Arts / Science / C	ommerce /				
) Ex	am., 2016	;i			
Subject					
Paper		To be filled in by the Candidate			
INSTRUCTIONS TO	CANDIDATES	DEGREE 5th Semester			
1. The Booklet No. of thi	is script should be	(Arts / Science / Commerce /			
quoted in the answer	script meant for) Exam., 2016			
descriptive type que versa.	estions and vice	Roll No.			
2. This paper should be A	ANSWERED FIRST	Regn. No.			
and submitted with	in 45 minutes	Regil No.			
of the commence Examination.	ement of the	Subject			
3. While answering the		Paper			
booklet, any cutting writing or furnishing					
answer is prohibited.	Any rough work,	Descriptive Type			
if required, should l the main Answer Bo	•	Booklet No. B			
given in each que followed for answeri: only.					
omy.					
Signature of Scrutiniser(s)	Signature of Examiner(s)	Signature of Invigilator(s)			

/136

$V/_{\text{CHEM (v)}}$

2016

(5th Semester)

CHEMISTRY						
FIFTH PAPER (Chem-351)						
(Organic Chemistry—II)						
(PART : A—OBJECTIVE)						
(<i>Marks</i> : 20)						
The figures in the margin indicate full marks for the questions						
SECTION—I						
(<i>Marks</i> : 5)						
Put a Tick (🗸) mark against the correct answer in the brackets provided : 1×5=5						
1. Side chain halogenation takes place by						
(a) electrophilic substitution mechanism ()						
(b) nucleophilic substitution mechanism ()						
(c) free radical mechanism ()						
(d) electrophilic addition mechanism ()						
/136						

2.		ative reactivity order of the following carboxy	ylio
	(a)	acid chloride > anhydride > ester)
	(b)	acid chloride > amide > ester)
	(c)	amide > ester > anhydride)
	(d)	anhydride > ester > amide)
3.	Sch	niff's bases are formed when aniline reacts wi	ith
	(a)	aromatic ketones ()	
	(b)	aromatic aldehydes ()	
	(c)	aryl halide ()	
	(d)	aryl alcohols ()	
4.	The	e product obtained in Mannich reaction is	
	(a)	α -hydroxy carbonyl compounds ()	
	(b)	β -amino carbonyl compounds ()	
	(c)	β -hydroxy carbonyl compounds ()	
	(d)	1°-amine ()	
V/CH	HEM	(v) /136	

5.	Electrophilic	substitution	of	furan	takes	place
	primarily at					

(a) C-2 ()

(b) C-3 ()

(c) C-4 ()

(d) 0-1 ()

V/CHEM (v)/136

(4)

SECTION—II

(Marks : 15)

Answer the following questions in not more than 6 sentences each : $3\times5=15$

1. Complete the reaction with suitable mechanism:

ONa
$$\xrightarrow{1) \text{CO}_2, 125 °C}$$
?

2. "Aldehydes are more reactive than ketones towards nucleophile." Explain.

V/CHEM (v)/136

3. What will happen when 1°, 2° and 3°-amines react with nitrous acid? Write chemical equation.

(7)

4. How will you obtain

from C_6H_5CHO ? Give the mechanism.

V/CHEM (v)/136

(8)

- **5.** Compare the basicity of—
 - (a) pyrrole and pyridine;
 - (b) pyridine and piperidine.

* * *

G7—300/136 V/CHEM (v)