2014

(1st Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-102

[Mathematics—I (Bridge Course)]

(Revised)

Full Marks: 75

Time: 3 hours

(PART : B-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer any five questions choosing one from each Unit

UNIT-I

- 1. (a) Find the numbers between 200 and 300 such that when they are divided by 6, 8, or 9—
 - (i) it leaves no remainder, i.e., exactly divisible;
 - (ii) it leaves in each case a remainder 5.

G15-280/190a

(Turn Over)

(b) A man reads $\frac{3}{8}$ of a book on a day and $\frac{4}{5}$ of the remainder on the second day. If the number of pages still unread are 40, how many pages did the book contain?

3

(c) The ratio between two numbers is 12:13. If each number is reduced by 20, the ratio becomes 2:3. Find the numbers.

3

2. (a) Find (i) the greatest number of 4 digits and (ii) the smallest number of 4 digits such that they are exactly divisible by 12, 15, 20 and 35.

4

(b) There are 50 boys in a class. Their average weight is 45 kg. When one boy leaves the class, the average reduces by 100 g. Find the weight of the boy who left the class.

3

(c) If bc : ac : ab = 1 : 2 : 3, find

$$\frac{a}{bc}:\frac{b}{ca}$$

3

UNIT-II

3. (a) If a, b, c are in AP, show that

$$\frac{1}{\sqrt{b} + \sqrt{c}}, \frac{1}{\sqrt{c} + \sqrt{a}}, \frac{1}{\sqrt{a} + \sqrt{b}}$$

are in AP.

4

G15-280/190a

(Continued)

- (b) If the 4th and 9th terms of a GP are 54 and 13122 respectively, find the GP. Also find its general term.
- 6

4

6

4. (a) If a, b, c are in AP, show that $a^2(b+c)$, $b^2(c+a)$, $c^2(a+b)$

are in AP.

(b) Insert three numbers between 1 and 256 so that the resulting sequence is a GP.

UNIT-III

5. (a) Using properties of determinants, prove that

$$\begin{vmatrix} y+z & x & x \\ y & z+x & y \\ z & z & x+y \end{vmatrix} = 4xyz$$

bott its to the time

- (b) If $A = \begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix}$, verify that $(\text{adj } A)^{-1} = (\text{adj } A^{-1})$.
- 6. (a) Using properties of determinants, prove that

$$\begin{vmatrix} b^{2} + c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2} + a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2} + b^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$
 4

G15-280/190a

(Turn Over)

(b) If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$$
, verify that $(A')^{-1} = (A^{-1})'$.

UNIT-IV

7. (a) If
$$y = \sin^{-1}(\cos x) + \cos^{-1}(\sin x)$$
, prove
that $\frac{dy}{dx} = -2$.

(b) If
$$x^y \cdot y^x = 1$$
, find $\frac{dy}{dx}$.

8. (a) Prove that

$$\frac{d}{dx}\{2x\tan^{-1}x - \log(1+x^2)\} = 2\tan^{-1}x$$

(b) If
$$y = x^{(x^x)}$$
, find $\frac{dy}{dx}$.

UNIT-V

9. (a) Prove that

$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}$$

(b) Evaluate
$$\int x \tan^{-1} x dx$$
.

(c) Evaluate
$$\int \sec^4 x \tan x dx$$
.

G15-280/190a

(Continued)

10.	(a)	Evaluate:	4
		$\int_0^{\frac{\pi}{2}} \log(\tan x) dx = 0$	
	(b)	Evaluate $\int \log(1+x^2) dx$.	3
	(c)	Evaluate $\int \sin^3 x \cos x dx$.	3

 $\star\star\star$

2. The digit in the unit **P 1 0 2** (1038)⁶⁷ is (1st Semester) BACHELOR OF COMPUTER APPLICATION Paper No. : BCA-102 [Mathematics—I (Bridge Course)] 3. The AM between (x (-besives)x + u)2 is (PART : A—OBJECTIVE) Sy + Sx (D) (Marks: 25) $n_1 = x^2 - n^2$ The figures in the margin indicate full marks for the questions SECTION-I (Marks: 15)) yx2 (b) Put a Tick (1) mark against the correct answer in the 01 301×1 a standard HP, the nth term is : bebivorg at standard of the nth term is : believe the nth term is : believe to the nth te h/1-m) + n = ...n 1. If * in the number 6*106 is replaced by a suitable digit, then the number formed is exactly divisible by 11. Then what is the value of *? (a) 1 (b) 2 () $\frac{1}{b(1-n)+b} = ab$ (3) $(d) \quad a_n = \frac{\alpha}{(n+1)d} \tag{1}$ (d) 4 ()

2. The digit in the unit place in (1038)⁶⁷ is

- (a) 4 ()
- (b), (2, TA) (149), NOTE:
- (c) 6 () 1 A DE TOTAL
- (d) 8 () cabatt (approximation)

3. The AM between $(x-y)^2$ and $(x+y)^2$ is

- (a) $x^2 + y^2$
- (b) $x^2 y^2$ ()
 - (c) -4xy ()
 - (d) 2xy ()

4. For a standard HP, the nth term is given by

fick 6/2 and recitors the deprect answer in the

(a)
$$a_n = a + (n-1)d$$
 ()

$$(b) \quad a_n = \frac{a}{(n-1)d} \qquad ()$$

(c)
$$a_n = \frac{1}{a + (n-1)d}$$
 ()

$$(d) \quad a_n = \frac{a}{(n+1)d} \qquad ()$$

I/BCA/102 (R)/190

5. If
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 then A^2 is equal to

- (a) A ()
 - (b) 0 ()
- (c) I ()
- (d) None of the above ()

6. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and $A^2 = 8A + kI$, then the value of k is

- (a) 1 ()
- (b) 7 ()
- (c) -1 ()
- (d) -7 ()

7. If
$$y = (ax + b)^{m-1}$$
, then $\frac{dy}{dx}$ is equal to

- (a) $m(ax+b)^m$ ()
- (b) $b(m-1)(ax+b)^m$ ()
- (c) $am(m-1)(ax+b)^{m-2}$ ()
- (d) $a(m-1)(ax+b)^{m-2}$ ()

I/BCA/102 (R)/190

8. If $y = \log_a x$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{1}{x \log a}$$
 ()

$$(b) \frac{1}{\log_a x} \qquad ()$$

(c)
$$\frac{\log a}{x}$$
 ()

$$(d) \frac{1}{ax} \qquad ()$$

9. The value of $\int \frac{1}{\sqrt[4]{x^3}} dx$ is

(a)
$$4x^{4/3} + C$$
 ()

(b)
$$\frac{4}{3}x^{3/4} + C$$
 ()

(c)
$$4x^{1/4} + C$$
 ()

(d)
$$\frac{3}{4}x^{1/4} + C$$
 (

10. The value of $\int_{1}^{\sqrt{2}} \frac{dx}{|x|(\sqrt{x^2-1})}$ is

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{2}$$

$$(c) \quad \frac{\pi}{3} \qquad ()$$

$$(d) \frac{\pi}{6} \qquad ()$$

I/BCA/102 (R)/190

Tick (✓) either True or False:

1×5=5

11. If the average of three numbers a, b and c is A, then the average of a, b, c and A is A.

True () / False ()

12. The sum of the series $1 + \frac{1}{4} + \frac{1}{16} + \cdots$ is $\frac{3}{4}$.

True () / False ()

13. If any two rows or columns of a determinant are proportional, then its value is zero.

True () / False ()

14. If $y = 3^{x+2}$, then the value of $\frac{dy}{dx}$ is $9 \times 3^x \log 3$.

True () / False ()

15. The value of $\int \frac{\log x}{x} dx$ is $\frac{1}{2} (\log x) + C$.

True () / False ()

SECTION-II

(Marks: 10)

Answer the following questions:

 $2 \times 5 = 10$

1. The sum of three numbers A, B and C is 98. If $A: B = \frac{2}{3}$ and $B: C = \frac{5}{8}$, then find the value of B.

2. The GM between two numbers is 16. If one number is 32, find the other number.

3. If
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = 0$$
, find x.

4. If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, find $\frac{dy}{dx}$.

(10)

5. Evaluate
$$\int \frac{e^{\tan^{-1}x}}{(1+x^2)} dx.$$

G15-280/190

I/BCA/102 (R)