IV/BOT (iv)

2015

(4th Semester)

BOTANY

FOURTH PAPER

(Microbiology, Cytology, Genetics and Evolution)

Full Marks: 55

Time: 21/2 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

 Describe the process of bacterial transduction with a neat labelled diagram.

Or

Write short notes on the following: 31/2+31/2=7

- (a) Bacterial cell and holodory (a)
- (b) Scope of microbiology
- 2. Discuss the role of microorganisms in cycling of carbon.

G15-550/264a

(Turn Over)

7

Or

Write short notes on the following: $3\frac{1}{2}+3\frac{1}{2}=7$

- (a) Alcoholic beverages
- (b) Fermented foods
- 3. What is cell? With labelled diagram, explain the ultrastructure of plant cell. 1+6=7

Or

Write notes on the following:

31/2+31/2=7

- (a) Incomplete dominance
- (b) Complementary genes
- 4. Define sex determination. Describe the chromosome theory of sex determination.

1+6=7

Or

Give brief accounts on the following:

31/2+31/2=7

- (a) Linkage map
- (b) Cytological basis of crossing-over
- 5. Describe Darwin's theory of evolution.

 Mention its demerits.

G15-550/264a

(Continued)

Or

Write short notes on the following: $3\frac{1}{2}+3\frac{1}{2}=7$

- (a) Chief features of Lamarck's theory of evolution
- (b) de Vries mutation theory

2015

(4th Semester)

BOTANY

FOURTH PAPER

(Microbiology, Cytology, Genetics and Evolution)

(PART : A—OBJECTIVE)

The figures in the margin indicate full marks for the questions

SECTION—I (Marks: 5)

Select the correct answer by putting a Tick (✓) mark in the brackets provided: 1×5=5

1.	When	spherical	bacteria	form	an	irregular	group
	they a	re called					

(a)	streptococci		() (6.801011	
(b)	staphylococci		()	- 1	201903	
(c)	tetracocci	()				

(d) sarcinae ()

2.	The liber	microbial red ration of mole ed	uctior cular	of n	itrate gen ai	to nit	rite with ous oxid	the e is
	(a)	nitrification) 1				
	(b)	nitrosification	n	()			
	(c)	ammonificat	ion	. (-		9,44)	. •	
	(d)	denitrification	n • 11 14 12	()		all in a	
3.		l division whi the organism		curs				
	(a)	mitosis	()			har.	
	(b)	meiosis	()			1.86611**	
	(c)	amitosis	()				
	(d)	All of the	above		()		
IV/E	3OT (iv) /264						

4.	Cro	ssing-over takes place in
	(a)	leptotene ()
	(b)	zygotene () () e e e e e e e e e e e e e e e
	(c)	pachytene ()
	(d)	diplotene ()
5.	Pro	gressive evolution
	(a)	involves a rapid development of organs or structure resulting thereby in the formation of new organs ()
	(b)	takes place from complex to simpler types resulting thereby in degeneration in structure ()
	(c)	takes place gradually from simple to more complex types resulting thereby in more complexity in structure ()
	(d)	None of the above ()

IV/BOT (iv)/264

SECTION-II

(Marks : 15)

Write short notes on the following:

 $3 \times 5 = 15$

1. Autotrophic and heterotrophic bacteria

sion of the meduacy born this to more

2. Microbial production of enzymes

3. Lethal genes

4. Significance of crossing-over

5. Organic evolution

G15-550/264

IV/BOT (iv)