IV/BIO-CHEM (iv) #### 2014 (4th Semester) #### BIOCHEMISTRY Paper No.: BC-4 ### (Molecular Biology) Full Marks: 55 Time: 2 hours (PART : B—DESCRIPTIVE) (Marks: 35) The figures in the margin indicate full marks for the questions 1. (a) Explain the mechanism of DNA replication in bacteria. Or (b) Write short notes on: 31/2+31/2=7 - (i) DNA polymerases - (ii) Evidence for DNA as genetic material 14G-100/477a (Turn Over) Explain the mechanism of transcription 7 in prokaryotes. Or31/2+31/2=7 Write short notes on: (b) Promoters (i) (ii) Polyadenylation What is genetic code? State the basic 3. (a) 2+5=7 features of genetic code. 31/2+31/2=7 (b) Write short notes on: Wobble hypothesis (ii) Lac operon Describe the assembly of ribosomes and steps involved in the initiation of protein translation in prokaryotes. 7 31/2+31/2=7 (b) Write short notes on: (i) A and P sites (ii) 70S initiation complex 5. (a) Explain the methods of gene cloning. Or (b) Write short notes on: 31/2+31/2=7 - (i) Restriction endonucleases - (ii) Monoclonal antibodies *** 14G-100/477a IV/BIO-CHEM (iv) ## IV/BIO-CHEM (iv) | 2014
(4th Semester) | |--| | BIOCHEMISTRY | | Paper No. BC-4 | | (Molecular Biology) | | (PART : A—OBJECTIVE) | | (<i>Marks</i> : 20) | | The figures in the margin indicate full marks for the questions | | Answer all questions | | SECTION—A (Marks: 5) | | rut a tick (/) mark against the correct answer in the racket provided: | | During DNA replication, the leading strand proceeds
in 5'-3' direction | | (a) discontinuously () | | (b) continuously () | | (c) Both (a) and (b) () | | (d) None of the above () | /477 | 2. | syn | e enzyme which is attached to the DNA for the thesis of a short RNA primer during the initiation pacterial DNA replication is | |------|-------|---| | | (a) | DNA primase () | | | (b) | RNA primase (). | | | (c) | tag polymerase () | | tod. | (d) | helicase () | | 3. | The | e reason for the availability of only 20 amino acids cified from 64 different triplet codes is due to | | 7- | (a) | anticodon () | | | (b) | primers () | | | (c) | degeneracy () | | | (d) | tRNA () | | IV/B | (O-C) | HEM (iv)/477 | www.gzrsc.edu.in | 4. | nuc | prokaryotic mRNAs, the conserved 8-13 leotide sequences located in upstream of the first on to be translated is known as | |-------|-------|--| | | | | | | (a) | Shine-Dalgarno sequence () | | 5 | (b) | terminating sequence () | | | (c) | elongation region () | | | (d) | None of the above () | | 5. | Res | striction enzymes cut a recognition sequence at | | | (a) | one end () | | | (b) | both ends () | | | (c) | Both (a) and (b) () | | 2 | | | | | (d) | None of the above () | | IV/BI | [O-C] | HEM (iv)/477 | SECTION—B (Marks: 15) Write short notes on the following: 3×5=15 N. BIO CHEM PHATE 1. Okazaki fragments IV/BIO-CHEM (iv)/477 2. Reverse transcriptase (6) 3. Overlapping genes IV/BIO-CHEM (iv)/477 4. Charged tRNA (.) 6. Plasmids ... 14G-100/477 IV/BIO-CHEM (iv)