Subject	:	PHYSICS
Paper Name	:	Thermal and Statistical Physics
Paper No.	:	PHY/VI/CC/18
Semester	:	VI

A. Multiple Choice Questions:

1. The mean free path of gas at pressure p and temperature T is

a)
$$\frac{kT}{(\sqrt{2})\sigma^{2}\pi p}$$

b)
$$\frac{p}{(\sqrt{2})\sigma^{2}\pi kT}$$

c)
$$\frac{\sqrt{kT}}{\sigma^{2}\pi p}$$

d)
$$\frac{1}{\sigma}\sqrt{\frac{kT}{2\pi p}}$$

- 2. According to Perrin's experiment the value of Avogadro's No I equal to
 - a) 62.2x10²²
 b) 64.2x10²²
 c) 66.2x10²²
 - *d*) 68.2×10^{22}
- 3. The formula for the most probable speed of the molecules

a)
$$C_m = \sqrt{\frac{3kT}{m}}$$

b) $C_m = \sqrt{\frac{m}{2kT}}$
c) $C_m = \sqrt{\frac{2kT}{m}}$
d) $C_m = \sqrt{\frac{m}{2kT}}$

4. The root mean square speed of molecules of mass '*m*' at temperature *T* is:

a)
$$\sqrt{\frac{2kT}{m}}$$

b) $\sqrt{\frac{3kT}{\pi m}}$
c) $\sqrt{\frac{3kT}{m}}$
d) $\sqrt{\frac{8kT}{m}}$

- 5. The most probable speed of molecules varies with temperature T as $v_{mp} \propto T^n$ the value of *n* is:
 - *a*) 0*b*) 1/2

- *c*) 2
- *d*) 1/3
- 6. In diffusion, the transport of the following occurs:
 - a) Momentum
 - b) Energy
 - c) Mass
 - *d*) none of these
- 7. At very low temperatures, the coefficient of viscosity of a gas
 - *a)* decreases with decrease of pressure.
 - b) increases with increase of pressure.
 - c) is independent of pressure.
 - *d*) is equal to pressure.
- 8. Four thermodynamic potentials are:
 - *a)* Pressure, volume, temperature and internal energy function.
 - b) Pressure, volume, internal energy and Helmholtz function.
 - c) Internal energy function, Helmholtz function, enthalpy and Gibbs function.
 - *d*) None of these.
- 9. From Maxwell's thermodynamic relations $E_S/E_T = ?$
 - a) ½
 - b) $\frac{1}{\gamma}$
 - c) γ
 - d) 2
- 10. Helmholtz free energy function is defined by:
 - a) F=U+TS
 - b) F=U-TS
 - c) F=U+PV
 - d) F=U+PV-TS
- 11. Constraints imposed on a system:
 - *a*) increase number of inaccessible microstates.
 - b) decrease the number of inaccessible microstates.
 - *c*) have no effect
 - *d*) none of these
- 12. The probability of occurrence of two independent events is equal to their:
 - a) Sum
 - *b)* Difference
 - c) Product
 - d) ratio

- 13. Choose the correct answer for extensive variables
 - a) Mass, volume, internal energy, entropy, temperature
 - b) Mass, volume, Pressure, entropy, heat capacity
 - c) Mass, volume, internal energy, entropy, heat capacity
 - d) Mass, volume, internal energy, density, heat capacity
- 14. According to Boltzmann canonical distribution law, the number of molecules per cell
 - a) increases linearly with energy associated with the cell,
 - b) increases exponentially with energy associated with the cell,
 - c) decreases linearly with energy associated with the cell,
 - d) decreases exponentially with energy associated with the cell.
- 15. In the equilibrium state;
 - *a)* probability is maximum,
 - b) P parameters of two systems are equal,
 - c) both (a) and (b),
 - *d*) number of particles is maximum.
- 16. Out of *n* particles in a gas, the number of particles having exactly the most probable velocity
 - a) Zero
 - *b*) *n*
 - c) n/2
 - *d*) 1
- 17. Microcanonical ensemble is a collection of essentially independent systems having
 - a) Same temperature, volume and no of identical particles.
 - b) Same energy, volume and no of particles
 - c) Same temperature, volume and chemical potential
 - *d*) None of these
- 18. In grand-canonical ensemble the expression for probability distribution is

a)
$$\rho(E) = e^{\left[\frac{\Omega + n\mu - E}{kT}\right]}$$

b) $\rho(E) = e^{\left[\frac{\Omega + n - \mu E}{kT}\right]}$
c) $\rho(E) = e^{\left[\frac{\Omega + n - E}{\mu kT}\right]}$
d) $\rho(E) = e^{\left[\frac{\Omega \mu + n - E}{kT}\right]}$

- 19. The number of meaningful ways 4 Fermions can be arranged in 5 compartments:
 - *a*) 1
 - *b*) 4
 - *c*) 5
 - *d*) 9

- 20. Partition function is
 - a) $z = \sum_i e^{-\beta E_i}$
 - b) $z = \sum_{i} e^{-2\beta E_i}$
 - c) $z = \sum_i e^{-2\beta/E_i}$
 - *d*) None of these
- 21. Boson particles obey Pauli's exclusion principle:
 - a) True
 - b) False
 - c) Can't say
 - d) Sometimes true sometimes false.
- 22. Fermions have spin value :
 - a) $\frac{1}{2}$
 - *b*) 1
 - c) 0
 - d) Any one.
- 23. Boson have spin value :
 - *a*) 0
 - *b*) 1
 - c) $\frac{1}{2}$
 - *d*) 0 or 1

24. The spin of photon is :

- a) Zero
- b) $\frac{1}{2}\hbar$
- c) ħ
- $d) \frac{3}{2}\hbar$

25. Average energy of a Planck's oscillator is :

- a) E = hv
- b) E = nhv
- c) $E = \frac{hv}{(e^{hv/kT} 1)}$
- d) $E=mc^2$

B. Fill up the blanks:

- Viscosity of a gas is due to transport of _____ 1.
- 2. The molecular density in a gas is n and the diameter of its molecule is d then the mean free path of molecule is _____

- 3. Statistical methods give greater accuracy when the number of observations is_____
- 4. The value of probability of an event cannot be_____
- 5. The macrostates which are allowed under a constrain are called _____
- 6. The thermodynamic probability of a system in equilibrium is_____
- 7. RMS speed of an ideal gas is inversely proportional to the square-root of its _____
- 8. The particles obeying Maxwell-Boltzmann statistics are _____
- 9. _____ remains constant in isothermal- isobaric process.
- 10. Intensive variables of a substance is independent of ______ of the system.
- 11. Photons obey the ______ statistics.
- 12. Deduction of Planck's law is possible on the basis of ______
- 13. Pauli's exclusion principle applies to _____
- 14. The ratio of most probable speed and average speed of a gas enclosed in a vessel is _____
- 15. The number of most probable macrostates for a system having odd number of particles is _____

Key Answers

A. Multiple Choice Questions:

1. a) $\frac{kT}{(\sqrt{2})\sigma^2 \pi p}$ 2. d) 68.2×10^{22} 3. c) $C_m = \sqrt{\frac{2kT}{m}}$

4. b)
$$\sqrt{\frac{3kT}{3kT}}$$

- $\int \frac{1}{\sqrt{\pi m}} \int \frac{1}{\sqrt{\pi m}} \frac{1}{\sqrt{\pi m}}$
- 5. b) 1/2
- 6. a) Momentum
- 7. c) is independent of pressure.
- 8. c) Internal energy function, Helmholtz function, enthalpy and Gibbs function.
- 9. c) γ
- 10. b) *F*=*U*-*TS*
- 11. a) increase number of inaccessible microstates.
- 12. c) Product
- 13. c) Mass, volume, internal energy, entropy, heat capacity

Downloaded from www.gzrsc.edu.in

- 14. d) decreases exponentially with energy associated with the cell.
- 15. c) both (a) and (b),
- 16. a) Zero
- 17. b) Same energy, volume and no of particles
- 18. a) $\rho(E) = e^{\left[\frac{\Omega + n\mu E}{kT}\right]}$ 19. c) 5 20. a) $z = \sum_{i} e^{-\beta E_{i}}$ 21. b) False 22. a) $\frac{1}{2}$ 23. d) 0 or 1 24. c) ħ
- 25. c) $E = \frac{hv}{(e^{hv/kT} 1)}$

B. Fill up the blanks:

1. Momentum	$2.\frac{1}{\sqrt{2\pi nd^2}}$	3. very large
4. negative	5. Accessible macrostates	6. Maximum
7. Mass	8. distinguishable	9. Gibb's free energy
10. Mass Or size	11. Bose-Einstein (B-E)	12. Bose-Einstein (B-E) statistics.
13. Fermi Dirac Statistics	14. $(\sqrt{\pi})/2$	15.2

Downloaded from www.gzrsc.edu.in