Subject	$:$	PHYSICS
Paper Name	$:$	Solid State Physics
Paper No.	$:$	PHY/VI/CC/21a
Semester	$:$	VI

A. Multiple Choice Questions:

1. If m is the mass of each of an array of identical, equidistant atoms with interatomic spacing a, f is the force constant and k is the wave vector. Then the dispersion relation for monoatomic linear lattice is
a) $\omega=2 \sqrt{\frac{f}{m}}\left|\sin \frac{k a}{2}\right|$
b) $\omega=2 \sqrt{\frac{m}{f}}\left|\sin \frac{k a}{2}\right|$
c) $\omega=2 \sqrt{\frac{f}{m}}|\sin k a|$
d) $\omega=2 \sqrt{\frac{m}{f}}|\sin k a|$
2. C_{s} and w_{k} are the velocity of sound and angular frequency of the $\mathrm{k}^{\text {th }}$ mode of vibration respectively. The energy of phonon is given by
a) $\hbar C_{k}=\hbar w_{s} k$
b) $\hbar w_{k}=\hbar C_{s} k$
c) $\hbar w_{k}=\frac{\hbar}{C_{s} k}$
d) $\hbar C_{s}=\frac{\hbar}{w_{k} k}$
3. In vibration of monoatomic linear lattice at low frequencies, i.e. $k=0$, the long wavelength limit. Which one is correct for the group velocity v_{g} and phase velocity v_{p} ?
a) $v_{g}>v_{p}$
b) $v_{g}<v_{p}$
c) $v_{g}=v_{p}$
d) $v_{g}=2 v_{p}$
4. In vibrational modes of diatomic linear lattice, the first brillouin zone limits the value of wave vector k to the range between
a) $-\frac{3 \pi}{2 a}$ and $+\frac{3 \pi}{2 a}$
b) $-\frac{2 \pi}{a}$ and $+\frac{2 \pi}{a}$
c) $-\frac{\pi}{a}$ and $+\frac{\pi}{a}$
d) $-\frac{\pi}{2 a}$ and $+\frac{\pi}{2 a}$

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

5. The frequencies in the first brillouin zone for optical branch and acousical branch are respectively
a) $\omega_{+}=\sqrt{\frac{2 f}{m}}$ and $\omega_{-}=\sqrt{\frac{2 f}{M}}$
b) $\omega_{+}=\sqrt{\frac{f}{m}}$ and $\omega_{-}=\sqrt{\frac{f}{M}}$
c) $\omega_{+}=\sqrt{\frac{f}{2 m}}$ and $\omega_{-}=\sqrt{\frac{f}{2 M}}$
d) $\omega_{+}=\sqrt{\frac{2 f}{3 m}}$ and $\omega_{-}=\sqrt{\frac{2 f}{3 M}}$
6. The magnetic susceptibility is independent of temperature in which magnetic material?
a) diamagnetic
b) ferromagnetic
c) paramagnetic
d) ferrimagnetic
7. The complicated temperature dependence of susceptibility of paramagnetic materials is explained by
a) Langevin theory
b) Weiss theory
c) Curie theory
d) none of the above
8. If n is the number of atoms each having permanent magnetic moment m. Then according to Langevin theory of paramagnetism, the magnetization M at low temperature will be
a) $M=\frac{m}{n}$
b) $M=\frac{n}{m}$
c) $M=m n$
d) $M=m^{n}$
9. A paramagnetic salt contains 10^{28} ions $/ \mathrm{m}^{3}$ with magnetic moment of 1 Bohr magneton. The paramagnetic susceptibility in a uniform magnetic field of $10^{6} \mathrm{~A} / \mathrm{m}$ at room temperature is
a) 0.87×10^{-2}
b) 8.7×10^{-4}
c) 8.7×10^{-2}
d) 0.87×10^{-4}
10. In quantum theory of paramagnetism, the susceptibility is given by the relation
a) $\chi=\frac{N^{2} p^{2} \mu_{B}^{2}}{2 k_{B} T}$
b) $\chi=\frac{N p^{2} \mu_{B}^{2}}{3 k_{B} T}$
c) $\chi=\frac{N p^{2} \mu_{B}^{2}}{2 k_{B} T}$
d) $\chi=\frac{N p^{2} \mu_{B}^{2}}{3 k_{B} T^{2}}$
11. The expression for Clausius-Mossotti equation is
a) $\frac{\epsilon_{r}-1}{\epsilon_{r}+2}=\frac{N \alpha}{3 \epsilon_{0}}$
b) $\frac{\epsilon_{r}+1}{\epsilon_{r}-2}=\frac{N \alpha}{3 \epsilon_{0}}$
c) $\frac{\epsilon_{r}-1}{\epsilon_{r^{\prime}}-2}=\frac{N \alpha}{3 \epsilon_{0}}$
d) $\frac{\epsilon_{r}+1}{\epsilon_{r}+2}=\frac{N \alpha}{3 \epsilon_{0}}$
12. The relation between polarization vector \vec{P} and electric displacement vector \vec{D} is given by
a) $\vec{D}=\varepsilon_{0} \vec{P}+\vec{E}$
b) $\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}$
c) $\vec{D}=\varepsilon_{0} \vec{E}-\vec{P}$
d) $\vec{D}=\varepsilon_{0} \vec{P}-\vec{E}$
13. The internal field or local field $\vec{E}_{l o c}$, i.e. the field acting at the location of an atom in a dielectric material is given by
a) $\vec{E}_{l o c}=\vec{P}+\frac{\vec{E}}{3 \varepsilon_{0}}$
b) $\vec{E}_{l o c}=\vec{P}-\frac{\vec{E}}{3 \varepsilon_{0}}$
c) $\vec{E}_{l o c}=\vec{E}+\frac{\vec{P}}{3 \varepsilon_{0}}$
d) $\vec{E}_{l o c}=\vec{E}-\frac{\vec{P}}{3 \varepsilon_{0}}$
14. An example of non-polar molecule is
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{N}_{2} \mathrm{O}$
c) CO
d) CO_{2}
15. The value of depolarirization factor for sphere is
a) 3
b) 2
c) $\frac{1}{3}$
d) $\frac{1}{2}$
16. The effective mass of an electron is given by
a) $m^{*}=\frac{h^{2}}{d^{2} E / d k^{2}}$
b) $m^{*}=\frac{d^{2} E / d k^{2}}{h^{2}}$
c) $m^{*}=\frac{d^{2} k / d E^{2}}{h^{2}}$
d) $m^{*}=\frac{h^{2}}{d^{2} k / d E^{2}}$
17. Kronig-Penney model is
a) real model
b) approximate model
c) both (a) and (b)
d) none of the above
18. Which is the correct expression for Bloch theorem?
a) $\psi(x)=e^{i k x}$
b) $\psi(x)=e^{-i k x}$
c) $\psi(x)=u(x) e^{i k x}$
d) $\psi(x)=u(x) e^{-i k x}$
19. In $E-k$ diagram
a) each portion of the curve represents allowed band of energies
b) the curves are horizontal at the top and bottom
c) the curves are parabolic near the top and bottom with curvatures in opposite direction
d) all of the above
20. The effective mass of an electron is maximum when it is in the
a) lower energy levels of an allowed band
b) higher energy levels of an allowed band
c) both (a) and (b)
d) energy levels corresponding to a point of inflection in allowed band
21. Superconductivity is exhibited at
a) Mercury at 4.2 K
b) Hydrogen at 4.2 K
c) Magnesium at 4.2 K
d) Potassium at 4.2 K
22. A superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a critical field of $0.0306 T$ at 0 K . The critical field at 2 K is
a) 0.261 T
b) 0.0261 T
c) 2.61 T
d) 2.061 T
23. If $H_{C}(0)$ is the critical field at $O K$. Then the critical magnetic field at temperature T is
a) $H_{C}(T)=H_{C}(0)\left[1-\left(\frac{T}{T_{C}}\right)\right]$
b) $H_{C}(T)=H_{C}(0)\left[\left(\frac{T}{T_{C}}\right)-1\right]$
c) $H_{C}(T)=H_{C}(0)\left[1-\left(\frac{T}{T_{C}}\right)^{2}\right]$
d) $H_{C}(T)=H_{C}(0)\left[\left(\frac{T}{T_{C}}\right)^{2}-1\right]$
24. The maximum known crtical field for type-I superconductor is of the order of
a) 100 T
b) 10 T
c) $1 T$
d) 0.1 T
25. At temperature $T<T_{C}$, the London's penetration depth $\lambda_{L}(T)$ can be expressed as
a) $\lambda_{L}(T)=\frac{\lambda_{L}(0)}{\sqrt{1-\left(\frac{T}{T_{C}}\right)^{4}}}$
b) $\lambda_{L}(T)=\frac{\lambda_{L}(0)}{\sqrt{1-\left(\frac{T}{T_{C}}\right)}}$
c) $\lambda_{L}(T)=\frac{\lambda_{L}(0)}{\sqrt{\left(\frac{T}{T_{C}}\right)^{4}-1}}$
d) $\lambda_{L}(T)=\frac{\lambda_{L}(0)}{\sqrt{\left(\frac{T}{T_{C}}\right)-1}}$

B. Fill up the blanks:

1. The quantum of energy in an eleastic wave is called \qquad
2. For one dimensional periodic lattice, the extreme values of wave vector in the first brillouin zone is \qquad
3. For the optical branch at $k=0$, vibration of atoms are in opposite direction and
\qquad are inversely in the ratio of the masses.
4. The value of 1 Bohr magneton is \qquad $A m^{2}$.
5. The magnetic materials which do not possess permanent magnetic moment is
\qquad materials.
6. The expression for susceptibility, i.e., $\chi=\frac{C}{T}$ is known as \qquad law.
7. The ratio between the absolute permittivity of the medium (ϵ) to the permittivity of free space $\left(\epsilon_{0}\right)$ is called \qquad
8. The process of producing electric dipoles by an electric field is called \qquad
9. The net polarizability of dielectric material results from three main contributions, which are, orientational polarizability, ionic polarizability and \qquad polarizability.

10 . The energy gap gor germanium $G e$ is \qquad eV.
11. In an insulator, the \qquad band is completely filled.
12. In Kronig-Penney model, the widths of allowed bands increases and forbidden bands decreases with increase of \qquad
13. A superconductor exhibits perfect diamagnetism, then $\chi=$ \qquad
14. The electron pairs in a superconductor are called \qquad
15. The intermidiate state between a superconducting and normal conductor is called
\qquad state.

Key Answers

A. Multiple Choice Questions:

1. a) $\omega=2 \sqrt{\frac{f}{m}}\left|\sin \frac{k a}{2}\right|$
2. b) $\hbar w_{k}=\hbar C_{s} k$
3. c) $v_{g}=v_{p}$
4. d) $-\frac{\pi}{2 a}$ and $+\frac{\pi}{2 a}$
5. a) $\omega_{+}=\sqrt{\frac{2 f}{m}}$ and $\omega_{-}=\sqrt{\frac{2 f}{M}}$
6. a) diamagnetic
7. b) Weiss theory
8. c) $M=m n$
9. d) 0.87×10^{-4}
10. b) $\chi=\frac{N p^{2} \mu_{B}^{2}}{3 k_{B} T}$
11. a) $\frac{\epsilon_{r}-1}{\epsilon_{r}+2}=\frac{N \alpha}{3 \epsilon_{0}}$
12. b) $\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}$
13. c) $\vec{E}_{l o c}=\vec{E}+\frac{\vec{P}}{3 \varepsilon_{0}}$
14. d) CO_{2}
15. c) $\frac{1}{3}$
16. a) $m^{*}=\frac{h^{2}}{d^{2} E / d k^{2}}$
17. b) approximate model
18. c) $\psi(x)=u(x) e^{i k x}$
19. d) all of the above
20. d) energy levels corresponding to a point of inflection in allowed band
21. a) Mercury at 4.2 K
22. b) $0.0261 T$
23. c) $H_{C}(T)=H_{C}(0)\left[1-\left(\frac{T}{T_{C}}\right)^{2}\right]$
24. d) $0.1 T$
25. a) $\lambda_{L}(T)=\frac{\lambda_{L}(0)}{\sqrt{1-\left(\frac{T}{T_{C}}\right)^{4}}}$

B. Fill up the blanks:

1. phonon
2. $\pm \frac{\pi}{a}$
3. 9.27×10^{-24}
4. diamagnetic
5. amplitude
6. dielectric constant/relative permittivity/ ϵ_{r}
7. Curie
8. electronic
9. 0.7
10. polarization
11. energy
12. -1
13. valence
14. cooper pair
15. vortex
