Subject	:	PHYSICS
Paper Name	:	Solid State Physics
Paper No.	:	PHY/VI/CC/21a
Semester	:	VI

A. Multiple Choice Questions:

1. If m is the mass of each of an array of identical, equidistant atoms with interatomic spacing a, f is the force constant and k is the wave vector. Then the dispersion relation for monoatomic linear lattice is

a)
$$\omega = 2\sqrt{\frac{f}{m}} \left| \sin \frac{ka}{2} \right|$$

b) $\omega = 2\sqrt{\frac{m}{f}} \left| \sin \frac{ka}{2} \right|$
c) $\omega = 2\sqrt{\frac{f}{m}} \left| \sin ka \right|$
d) $\omega = 2\sqrt{\frac{m}{f}} \left| \sin ka \right|$

- 2. C_s and w_k are the velocity of sound and angular frequency of the kth mode of vibration respectively. The energy of phonon is given by
 - a) $\hbar C_k = \hbar w_s k$ b) $\hbar w_k = \hbar C_s k$ c) $\hbar w_k = \frac{\hbar}{c_s k}$ d) $\hbar C_s = \frac{\hbar}{w_k k}$
- 3. In vibration of monoatomic linear lattice at low frequencies, i.e. k = 0, the long wavelength limit. Which one is correct for the group velocity v_g and phase velocity v_p ?
 - a) $v_g > v_p$ b) $v_g < v_p$ c) $v_g = v_p$ d) $v_q = 2v_p$
- 4. In vibrational modes of diatomic linear lattice, the first brillouin zone limits the value of wave vector k to the range between
 - a) $-\frac{3\pi}{2a}$ and $+\frac{3\pi}{2a}$ b) $-\frac{2\pi}{a}$ and $+\frac{2\pi}{a}$ c) $-\frac{\pi}{a}$ and $+\frac{\pi}{a}$ d) $-\frac{\pi}{2a}$ and $+\frac{\pi}{2a}$

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

5. The frequencies in the first brillouin zone for optical branch and acousical branch are respectively

a)
$$\omega_{+} = \sqrt{\frac{2f}{m}}$$
 and $\omega_{-} = \sqrt{\frac{2f}{M}}$
b) $\omega_{+} = \sqrt{\frac{f}{m}}$ and $\omega_{-} = \sqrt{\frac{f}{M}}$
c) $\omega_{+} = \sqrt{\frac{f}{2m}}$ and $\omega_{-} = \sqrt{\frac{f}{2M}}$
d) $\omega_{+} = \sqrt{\frac{2f}{3m}}$ and $\omega_{-} = \sqrt{\frac{2f}{3M}}$

- 6. The magnetic susceptibility is independent of temperature in which magnetic material?
 - a) diamagnetic
 - b) ferromagnetic
 - c) paramagnetic
 - d) ferrimagnetic
- 7. The complicated temperature dependence of susceptibility of paramagnetic materials is explained by
 - a) Langevin theory
 - b) Weiss theory
 - c) Curie theory
 - d) none of the above
- 8. If n is the number of atoms each having permanent magnetic moment m. Then according to Langevin theory of paramagnetism, the magnetization M at low temperature will be
 - a) $M = \frac{m}{n}$ b) $M = \frac{n}{m}$ c) M = mnd) $M = m^n$
- 9. A paramagnetic salt contains $10^{28}ions/m^3$ with magnetic moment of *1 Bohr* magneton. The paramagnetic susceptibility in a uniform magnetic field of $10^6 A/m$ at room temperature is
 - a) 0.87 x 10⁻² b) 8.7 x 10⁻⁴ c) 8.7 x 10⁻²
 - d) 0.87 x 10⁻⁴
- 10. In quantum theory of paramagnetism, the susceptibility is given by the relation

a)
$$\chi = \frac{N^2 p^2 \mu_B^2}{2k_B T}$$

b)
$$\chi = \frac{N p^2 \mu_B^2}{3k_B T}$$

c)
$$\chi = \frac{N p^2 \mu_B^2}{2k_B T}$$

d)
$$\chi = \frac{N p^2 \mu_B^2}{3k_B T^2}$$

11. The expression for Clausius-Mossotti equation is

a)
$$\frac{\epsilon_r - 1}{\epsilon_r + 2} = \frac{N\alpha}{3\epsilon_0}$$

b) $\frac{\epsilon_r + 1}{\epsilon_r - 2} = \frac{N\alpha}{3\epsilon_0}$
c) $\frac{\epsilon_r - 1}{\epsilon_r - 2} = \frac{N\alpha}{3\epsilon_0}$
d) $\frac{\epsilon_r + 1}{\epsilon_r + 2} = \frac{N\alpha}{3\epsilon_0}$

- 12. The relation between polarization vector \vec{P} and electric displacement vector \vec{D} is given by
 - a) $\vec{D} = \varepsilon_0 \vec{P} + \vec{E}$ b) $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ c) $\vec{D} = \varepsilon_0 \vec{E} - \vec{P}$ d) $\vec{D} = \varepsilon_0 \vec{P} - \vec{E}$
- 13. The internal field or local field \vec{E}_{loc} , i.e. the field acting at the location of an atom in a dielectric material is given by

a)
$$\vec{E}_{loc} = \vec{P} + \frac{\vec{E}}{3\varepsilon_0}$$

b) $\vec{E}_{loc} = \vec{P} - \frac{\vec{E}}{3\varepsilon_0}$
c) $\vec{E}_{loc} = \vec{E} + \frac{\vec{P}}{3\varepsilon_0}$
d) $\vec{E}_{loc} = \vec{E} - \frac{\vec{P}}{3\varepsilon_0}$

14. An example of non-polar molecule is

- a) H_2O
- b) *N*₂*O*
- c) *CO*
- d) *CO*₂

15. The value of depolarirization factor for sphere is

- a) 3
- b) 2
- c) $\frac{1}{3}$
 - 3

d)
$$\frac{1}{2}$$

16. The effective mass of an electron is given by

a)
$$m^* = \frac{h^2}{d^2 E/dk^2}$$

b) $m^* = \frac{d^2 E/dk^2}{h^2}$
c) $m^* = \frac{d^2 k/dE^2}{h^2}$
d) $m^* = \frac{h^2}{d^2 k/dE^2}$

- 17. Kronig-Penney model is
 - a) real model
 - b) approximate model
 - c) both (a) and (b)
 - d) none of the above

18. Which is the correct expression for Bloch theorem?

- a) $\psi(x) = e^{ikx}$ b) $\psi(x) = e^{-ikx}$
- c) $\psi(x) = c$ c) $\psi(x) = u(x)e^{ikx}$
- d) $\psi(x) = u(x)e^{-ikx}$
- 19. In E-k diagram
 - a) each portion of the curve represents allowed band of energies
 - b) the curves are horizontal at the top and bottom
 - c) the curves are parabolic near the top and bottom with curvatures in opposite direction
 - d) all of the above
- 20. The effective mass of an electron is maximum when it is in the
 - a) lower energy levels of an allowed band
 - b) higher energy levels of an allowed band
 - c) both (a) and (b)
 - d) energy levels corresponding to a point of inflection in allowed band

21. Superconductivity is exhibited at

- a) Mercury at 4.2 K
- b) Hydrogen at 4.2 K
- c) Magnesium at 4.2 K
- d) Potassium at 4.2 K
- 22. A superconducting tin has a critical temperature of *3.7 K* at zero magnetic field and a critical field of *0.0306 T* at *0 K*. The critical field at *2 K* is

Downloaded from www.gzrsc.edu.in

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

- a) 0.261 *T*
- b) 0.0261 T
- c) 2.61 *T*
- d) 2.061 T
- 23. If $H_c(0)$ is the critical field at OK. Then the critical magnetic field at temperature T is
 - a) $H_C(T) = H_C(0) \left[1 \left(\frac{T}{T_C}\right)\right]$ b) $H_C(T) = H_C(0) \left[\left(\frac{T}{T_C}\right) - 1\right]$ c) $H_C(T) = H_C(0) \left[1 - \left(\frac{T}{T_C}\right)^2\right]$ d) $H_C(T) = H_C(0) \left[\left(\frac{T}{T_C}\right)^2 - 1\right]$
- 24. The maximum known crtical field for type-I superconductor is of the order of
 - a) 100 T
 - b) 10 T
 - c) 1 *T*
 - d) 0.1 *T*
- 25. At temperature $T < T_C$, the London's penetration depth $\lambda_L(T)$ can be expressed as a) $\lambda_L(T) = \frac{\lambda_L(0)}{1 + 1}$

b)
$$\lambda_L(T) = \frac{\lambda_L(0)}{\sqrt{1 - \left(\frac{T}{T_C}\right)^4}}$$

c) $\lambda_L(T) = \frac{\lambda_L(0)}{\sqrt{\left(\frac{T}{T_C}\right)^4} - 1}}$
d) $\lambda_L(T) = \frac{\lambda_L(0)}{\sqrt{\left(\frac{T}{T_C}\right)^4} - 1}}$

B. Fill up the blanks:

- 1. The quantum of energy in an eleastic wave is called ______
- 2. For one dimensional periodic lattice, the extreme values of wave vector in the first brillouin zone is ______
- 3. For the optical branch at k = 0, vibration of atoms are in opposite direction and ______ are inversely in the ratio of the masses.
- 4. The value of *1 Bohr magneton is* $___Am^2$.

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

- 5. The magnetic materials which do not possess permanent magnetic moment is ______ materials.
- 6. The expression for susceptibility, i.e., $\chi = \frac{c}{r}$ is known as _____ law.
- 7. The ratio between the absolute permittivity of the medium (ϵ) to the permittivity of free space (ϵ_0) is called _____
- 8. The process of producing electric dipoles by an electric field is called _____
- 9. The net polarizability of dielectric material results from three main contributions, which are, orientational polarizability, ionic polarizability and ______ polarizability.
- 10. The energy gap gor germanium Ge is ______ eV.
- 11. In an insulator, the _____ band is completely filled.
- 12. In Kronig-Penney model, the widths of allowed bands increases and forbidden bands decreases with increase of ______
- 13. A superconductor exhibits perfect diamagnetism, then $\chi =$ _____
- 14. The electron pairs in a superconductor are called _____

Key Answers

A. Multiple Choice Questions:

1. a)
$$\omega = 2\sqrt{\frac{f}{m}} \left| \sin \frac{ka}{2} \right|$$

2. b) $\hbar w_k = \hbar C_s k$
3. c) $v_g = v_p$
4. d) $-\frac{\pi}{2a}$ and $+\frac{\pi}{2a}$
5. a) $\omega_+ = \sqrt{\frac{2f}{m}}$ and $\omega_- = \sqrt{\frac{2f}{M}}$
6. a) diamagnetic
7. b) Weiss theory
8. c) $M = mn$
9. d) 0.87 x 10⁻⁴
10. b) $\chi = \frac{Np^2 \mu_B^2}{3k_BT}$

11. a)
$$\frac{\epsilon_r - 1}{\epsilon_r + 2} = \frac{N\alpha}{3\epsilon_0}$$

12. b) $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$
13. c) $\vec{E}_{loc} = \vec{E} + \frac{\vec{P}}{3\epsilon_0}$
14. d) CO_2
15. c) $\frac{1}{3}$
16. a) $m^* = \frac{h^2}{d^2E/dk^2}$
17. b) approximate model
18. c) $\psi(x) = u(x)e^{ikx}$
19. d) all of the above
20. d) energy levels corresponding to a point of inflection in allowed band
21. a) Mercury at 4.2 K
22. b) 0.0261 T
23. c) $H_C(T) = H_C(0) \left[1 - \left(\frac{T}{T_C}\right)^2\right]$
24. d) 0.1 T
25. a) $\lambda_L(T) = \frac{\lambda_L(0)}{\sqrt{1 - \left(\frac{T}{T_C}\right)^4}}$

B. Fill up the blanks:

1. phonon	$2.\pm\frac{\pi}{a}$	3. amplitude
4. 9.27 x 10^{-24}	5. diamagnetic	6. Curie
7. dielectric constant/relative p	8. polarization	
9. electronic	10. 0.7	11. valence
12. energy	131	14. cooper pair
15. vortex		