Subject:PHYSICS Paper name:Solid State Physics-II Paper No:PHY/VI/CC/21(a) Semester:6th Semester

A. Multiple choice questions [25 (5 from each unit)]

- 1. The lattice wave behaves like a standing wave without any transfer of energy at frequency
 - a) $\omega > \sqrt{2\beta / m}$ b) $\omega = \sqrt{2\beta / m}$ c) $\omega < \sqrt{2\beta / m}$ d) $\omega = 0$
- 2. The forbidden frequency band of solids disappears at $k = \pm \pi / 2a$, if
 - a) m > M
 - b) m < M
 - c) m = M
 - d) mM = 1

where m and M are the masses of the light and heavy atoms respectively.

- 3. For optical branch, the light and heavy atoms move in opposite directions if their respective amplitudes A and B are related as
 - a) A/B = 1
 - b) A/B = -1
 - c) AB = 1
 - d) AB = 0
- 4. Phonons are quantized energy unit and obey
 - a) MB statistics
 - b) FD statistics
 - c) BE statistics
 - d) Planks Law
- 5. If v_p and v_g be the phase velocity and group velocity of the lattice wave, then in the long wavelength side
 - a) $v_p > v_g$
 - b) $v_p = v_g$
 - $\mathsf{C}) \ v_p < v_g$

Downloaded from www.gzrsc.edu.in

d) $v_p = v_g = \infty$

- 6. All materials exhibit
 - a) Diamagnetism
 - b) Paramagnetism
 - c) Ferromagnetism
 - d) Ferrimagnetism

7. The spontaneous magnetization of ferromagnetic at Curie temperature is

- a) 1
- b) 0
- c) ∞
- d) >0

8. If the susceptibility of a material is independent of temperature, then it is

- a) Ferrimagnetic
- b) Ferromagnetic
- c) Paramagnetic
- d) Diamagnetic
- 9. The ferromagnetic susceptibility is given by

)

a)
$$\chi = \frac{C}{T + T_C}$$

b) $\chi = C(T + T_C)$
c) $\chi = \frac{C}{T - T_C}$
d) $\chi = \frac{CT}{T + T_C}$

- 10. The dimension of ferromagnetic domain is of the order of
 - a) $10^6 m$
 - b) 10⁻⁹ m
 - c) $10^{-6}m$
 - d) $10^{-3}m$
- ^{11.} In the absence of an electric field the non-polar molecules have a
 - a) Dipole moment
 - b) Zero dipole moment
 - c) Transient dipole moment

Downloaded from www.gzrsc.edu.in

- d) Exponentially increasing dipole moment
- 12. In a polar dielectric, in absence of electric field, the dipoles are
 - a) Parallel
 - b) Anti-parallel
 - c) Randomly oriented
 - d) Incline at 45° to horizontal direction
- 13. At moderate temperature T, the electronic polarisability (α_{e}) is
 - a) Linearly depends on T
 - b) Independent of T
 - c) Inversely dependent of T
 - d) Exponentially dependent of T
- 14. Select the correct relation

a)
$$D = \varepsilon_0 (\varepsilon_r - 1)$$

b) $E = \varepsilon_0 (\varepsilon_r - 1) P$

c)
$$P = \varepsilon_0 (\varepsilon_r - 1) E$$

d) $\varepsilon_r = (\chi - 1)$

- 15. At optical frequencies $(\Box 10^{15} H_Z)$ the dielectric constant (ε_r) depends on the refractive index (η) as
 - a) $\varepsilon_r \propto \eta$
 - b) $\varepsilon_r \propto \eta^2$
 - c) $\varepsilon_r \propto 1/\eta$
 - d) $\varepsilon_{\rm r} \propto 1/\eta^2$
- ^{16.} The solution of Schrodinger equation for an electron moving in a periodic potential is of the form a) $\psi_k(\vec{\mathbf{r}}) = e^{i\vec{k}.\vec{r}}$ b) $\psi_k(\vec{\mathbf{r}}) = u_k(\vec{\mathbf{r}})$
 - c) $\psi_k(\vec{\mathbf{r}}) = u_k(\vec{\mathbf{r}})e^{i\vec{k}\cdot\vec{r}}$
 - d) $\psi_{\nu}(\vec{r}) = u_{\nu}(\vec{r}) + Ae^{i\vec{k}.\vec{r}}$
- 17. The K-electron of copper atom is so slightly bound to the nucleus that its effective mass is a) $m_{e}^{*} = 0$
 - b) $m_e^* = \infty$

- C) $m_{e}^{*} = m_{e}$
- d) $0 < m_e^* < \infty$
- 18. The velocity of an electron from (E- k) curve is

a)
$$v = \frac{1}{\hbar} \frac{dE}{dk}$$

b) $v = \hbar \frac{dE}{dk}$
c) $v = \frac{1}{\hbar} \frac{d^2 E}{dk^2}$
d) $v = \frac{1}{\hbar} / \frac{dE}{dk}$

19. In an (E- k) curve, the condition for energy discontinuity is

a)
$$k = \pm \frac{n\pi}{a}$$

b) $k = \pm \frac{a}{n\pi}$
c) $k = \pm \frac{2a}{n\pi}$
d) $k = \pm \frac{n\pi}{2a}$

20. In a crystal having N primitive cells, the maximum number of electrons per band is

- a) 0
- b) N
- c) 2N
- q) ∞
- 21. According to BCS theory, the exchange of virtual phonons between the two electrons forming Cooper pair takes place through
 - a) Magnetic field
 - b) Spin-orbit inter action
 - c) Lattice deformation
 - d) Electric field
- 22. The temperature at which the conductivity of a material becomes infinite is called
 - a) Critical temperature

4 Downloaded from www.gzrsc.edu.in

- b) Absolute temperature
- c) Mean temperature
- d) Crystallization temperature

- 23. In a superconductor Fermi level lies
 - a) Midway between the ground state and first excited state
 - b) Below the ground state
 - c) At the first excited state
 - d) Above the first excited state
- 24. There three important lengths which enter the theory of superconductivity except
 - a) London penetration length/depth
 - b) Intrinsic coherence length
 - c) Normal electron mean free length
 - d) Mean path length
- 25. Which of the following is/are the properties of superconductors?
 - a) They are diamagnetic in nature
 - b) They have zero resistivity
 - c) They have infinite conductivity
 - d) All of the above.

B. Fill up the blanks [15 (3 from each unit)]

- 1. At the Brillouin zone edge $\left(k = \frac{\pi}{2a}\right)$ the lighter atom of diatomic lattice vibrates in the branch.
- 2. Just as photon is the quantum of electromagnetic energy, phonon is the quantum energy of
- 3. In inelastic scattering of photon by _____, a phonon is created/absorbed.
- 4. If $T > T_c$, χ is positive and the material behave as _____.
- 5. The lag of magnetisation behind the magnetising field in ferromagnetic materials is called ______.
- 6. The diamagnetic susceptibility ______ with increase in number of atom/volume.
- 7. The macroscopic field caused by a uniform polarisation is equal to the electric field in vacuum of a fictitious surface charge density given by ______on the surface of the body.
- 8. Lorentz cavity field given by _____ is field from polarisation charges on inside of a spherical cavity cut out of the specimen with the reference atom as centre.
- 9. Claussius-Mossotti relation relates ______ with the atomic polarisability.
- 10. If the barrier potential strength P is large, we get ______ spectrum.
- 11. The value of energy of electrons in conduction band range from zero to a maximum value called
- 12. Around k = 0, effective mass of electron m^* increases till the point of inflection of the (E-k) curve, above which m^* is _____.
- 13. The depth from the surface of a superconductor where the magnetic field reduces to 1/e of its value at the surface is called ______
- 14. The minimum amount of current passed through the body of a superconductor in order to destroy the superconductivity is called ______
- 15. The magnetic lines of force cannot penetrate the body of a superconductor, this phenomenon is known as _____

Key Answers

A. Multiple choice questions

1. b)	2. c)	3. b)	4.c)	5. b)	6.a)	7. b)
8. d)	9. c)	10. c)	11. b)	12. c)	13. b)	14. c)
15. b)	16. c)	17. b)	18. a)	19. a)	20. c)	21. c)
22. a)	23. a)	24. d)	25. d)			

B. Fill up the blanks [replace x]

- 1. optical
- 2. lattice vibration
- 3. lattice
- 4. paramagnetic
- 5. Hysteresis
- 6. increases

7.
$$\overset{\mathbf{r}}{\sigma} = \hat{n}.P$$

8.
$$E = \frac{P}{3\varepsilon_0}$$

- 9. dielectric constant
- 10. line
- 11. Fermi energy
- 12. Negative
- 13. Penetration depth
- 14. Critical current
- 15. Meissner effect