Subject: PHYSICS Paper name: Solid State Physics Paper No: PHY/VI/CC/21a Semester: 6 (Sixth)

A. Multiple choice questions [25 (5 from each unit)]

- 1. The vibration of a crystal lattice is
 - a) Simple harmonic
 - b) Coupled vibration
 - c) Mixture of (a) and (b)
 - d) None of these
- 2. If v_p and v_g be the phase velocity and group velocity of the lattice wave, then in the long wavelength side
 - a) $v_g > v_p$ b) $v_g = v_p$ c) $v_g < v_p$ d) $v_a = v_p = \infty$
- 3. If the heavier mass $M \to \infty$, then
 - a) the acoustical branch disappears
 - b) the optical branch disappears
 - c) both the above branches disappear
 - d) none of these
- 4. If the light mass $m \rightarrow 0$, then
 - a) acoustical branch disappears
 - b) optical branch disappears
 - c) both acoustical branch and optical branch disappear
 - d) none of these
- 5. In inelastic scattering of a photon with lattice a phonon is
 - a) created
 - b) absorbed
 - c) created or absorbed
 - d) none of these
- 6. The origin of magnetism in material is the presence of
 - a) electric dipole
 - b) magnetic dipole
 - c) magnetic monopole
 - d) electric monopole

- 7. Diamagnetic susceptibility is
 - a) small and positive
 - b) small and negative
 - c) large and positive
 - d) large and negative
- 8. The paramagnetic susceptibility varies as
 - a) T
 - b) T^2
 - c) $\frac{1}{T}$

 - d) $\frac{1}{T^2}$
- 9. The relative permeability is related to magnetic susceptibility by
 - a) $\mu_r = 1 \chi$
 - b) $\mu_r = \frac{1}{\chi}$
 - c) $\mu_r = \chi 1$
 - d) $\mu_r = \chi + 1$
- 10. The permanent magnetic moment in ferromagnetic arises due to
 - a) partially filled electronic shells
 - b) completely filled electronic shells
 - c) innermost electronic shells
 - d) none of these
- 11. If ε and ε_0 be the permittivity of material and of free space respectively, then the relative permittivity (or dielectric constant) of the material is
 - a) $\varepsilon_r = \varepsilon_0 / \varepsilon$
 - b) $\varepsilon_r = \varepsilon_0 \varepsilon$
 - c) $\varepsilon_r = \varepsilon / \varepsilon_0$
 - d) $\varepsilon_r = 1/\varepsilon\varepsilon_0$
- 12. In polar molecules in absence of an electric field the centre of gravity of the positive and negative charges
 - a) coincides
 - b) does not coincide
 - c) almost coincides
 - d) none of these
- 13. In absence of an electric field the non-polar molecules have a
 - a) dipole moment
 - b) zero dipole moment
 - c) transient dipole moment
 - d) none of these

- 14. Select the correct relation
 - a) $D = \varepsilon_0(\varepsilon_r 1)E$ b) $E = \varepsilon_0(\varepsilon_r - 1)P$ c) $P = \varepsilon_0(\varepsilon_r - 1)E$ d) $\varepsilon_r = (\chi - 1)$
- 15. Lorentz field is expressed as

a)
$$E_L = E + \frac{P}{3\varepsilon_0}$$

b) $E_L = E + \frac{3P}{\varepsilon_0}$
c) $E_L = E - \frac{P}{3\varepsilon_0}$
d) $E_L = \frac{3P}{\varepsilon_0 E}$

16. In an (E - k) curve, the condition for energy discontinuity is

a)
$$k = \pm \frac{n\pi}{a}$$

b) $k = \pm \frac{a}{n\pi}$
c) $k = \frac{2a}{n\pi}$
d) $k = \frac{\pi}{a}$

- 17. The extent to which an electron is free is given by f_k , where f_k is equal to
 - a) $\frac{m}{\hbar^2} \left(\frac{d^2 E}{dk^2} \right)$ b) $m\hbar^2 \left(\frac{d^2 E}{dk^2} \right)$ c) $\frac{\hbar^2}{m} \left(\frac{d^2 E}{dk^2} \right)$ d) $\frac{m}{\hbar^2} \left(\frac{d^2 k}{dE^2} \right)$
- 18. The solution of Schroedinger equation for an electron moving in a periodic potential is of the form
 - a) $\Psi_k(\vec{r}) = e^{i\vec{k}.\vec{r}}$ b) $\Psi_k(\vec{r}) = u_k(\vec{r})$ c) $\Psi_k(\vec{r}) = u_k(\vec{r})e^{i\vec{k}.\vec{r}}$ d) $\Psi_k(\vec{r}) = u_k(\vec{r}) + Ae^{i\vec{k}.\vec{r}}$
- 19. The effective mass of an electron moving in a periodic lattice is $d^{2}E$

a)
$$m_e^* = \hbar^2 / \frac{d^2 E}{dk^2}$$

b) $m_e^* = \hbar^2 \frac{d^2 E}{dk^2}$
c) $m_e^* = \frac{\hbar^2 d^2 k}{dE^2}$
d) $m_e^* = m_e$
where *E* and *k* are the field and wave vectors relating to

Downloaded from www.gzrsc.edu.in

the motion of the electron.

20. The velocity of an electron from (E - k) curve is

a)
$$v = \frac{1}{\hbar} \frac{dE}{dk}$$

b) $v = \hbar \frac{dE}{dk}$
c) $v = \frac{1}{\hbar} \frac{d^2 E}{dk^2}$
d) $v = \hbar / \left(\frac{dE}{dk}\right)$

- 21. The resistivity of a superconductor as $T \rightarrow 0$ becomes
 - a) ∞
 - b) 0
 - c) any value between 0 and ∞
 - d) none of these
- 22. Below transition temperature (T_c) a superconductor exhibits
 - a) only zero resistance
 - b) only diamagnetic property
 - c) zero resistance and diamagnetic property
 - d) zero resistance and paramagnetic property
- 23. The magnetic susceptibility χ of a superconductor has
 - a) a positive value
 - b) $\chi \to 0$ as $T \to T_c$
 - c) $\chi \to \infty$ as $T \to T_c$
 - d) a negative value
- 24. When a material becomes superconductor
 - a) it becomes ferromagnetic
 - b) the property of lattice structure does not change
 - c) magnetic property does not change
 - d) lattice property does change
- 25. London penetration depth is given by

a)
$$\lambda = \frac{m}{\mu_0 n_s e^2}$$

b) $\lambda = \left(\frac{m}{\mu_0 n_s e^2}\right)^2$
c) $\lambda = \left(\frac{m}{\mu_0 n_s e^2}\right)^{1/2}$
d) $\lambda = \left(\frac{m\mu_0}{n_s e^2}\right)^{1/2}$

B. Fill up the blanks [15 (3 from each unit)]

- 1. Group velocity of a wave is the velocity with which _____ energy is transmitted along the direction of propagation of wave
- 2. If the light mass m and heavy mass M be equal, then the frequency range in both the monatomic and diatomic lattices is the same and the forbidden band_____
- 3. Phonons are quantized energy units and obey _____
- 4. All materials exhibit _
- 5. If the susceptibility of a material is independent of temperature, then it is ____
- 6. The materials in which the permanent dipoles are aligned due to bonding forces are called _____
- 7. The unit of dipole moment per unit volume is _____
- 8. The relation $\frac{N\alpha}{3\varepsilon_0} = \frac{\varepsilon_r 1}{\varepsilon_r + 2}$ is called _____
- 9. Dielectrics are basically
- 10. The energy spectrum of an electron moving in a periodic potential consists of _____
- 11. According to band theory of solids an electron can have _____
- 12. Bloch theorem is applicable to ____
- 13. The width of the energy gap of a superconductor is zero at _____
- 14. In Cooper pair the electrons have ____
- 15. According to BCS theory the zero resistance of a superconductors arises due to _____

Key Answers

A. Multiple choice questions [replace x]

1. b)	2. b)	3. a)	4. b)	5. c)	6. b)	7. b)
8. c)	9. d)	10. a)	11. c)	12. b)	13. b)	14. c)
15. b)	16. a)	17. a)	18. c)	19. a)	20. a)	21. b)
22. c)	23. d)	24. b)	25. c)	,	,	,

- B. Fill up the blanks
- 1. energy
- 2. does not exist
- 3. BE-statistics
- 4. diamagnetism
- 5. diamagnetic
- 6. ferromagnetic
- 7. coulomb/metre²
- 8. Clausius-Mosotti relation
- 9. insulators
- 10. allowed and forbidden energy regions
- 11. only the energy corresponding to energy bands
- 12. periodic potential
- 13. transition temperature
- 14. anti-parallel spin
- 15. absence of phonon scattering