| Sub         | iect | : | Mathematics |
|-------------|------|---|-------------|
| · · · · · · |      | - |             |

- Paper Name : Advanced Calculus
- Paper No : MATH/6/CC/362
- Semester : 6<sup>th</sup> semester

A. Multiple Choice Questions[25(5 from each unit)]

- 1. If  $f_1, f_2 \in R[a, b]$  then the odd one is
- (a)  $f_1^2 \in R[a,b]$
- (b)  $f_1 + f_2 \in R[a, b]$
- (c)  $f_1 / f_2 \in R[a,b]$
- (d)  $f_2^2 \in R[a,b]$
- 2. If f is defined on [a,b] by  $f(x) = k, \forall x \in [a,b]$  then
  - (a)  $f \in R[a,b]$
  - (b)  $f \notin R[a,b]$

(c) 
$$\int_{a}^{b} k = k(b-a)$$

- (d) Both (a) and (c)
- 3. If f is defined on [0,1] by
  - f(x) = 0 , when x is rational
  - f(x) = 1 , when x is irrational , then
  - (a) f is bounded on [0,1]
- (b)  $f \notin R[a,b]$
- (c) Both (a) and (b)
- (d) None of the above

4. If f is a function defined on [-1,1] by f(x) = |x| then which one of the following is incorrect

- (a) f is bounded
- (b) f is continuous
- (c) f is integrable
- (d) f is not integrable

5. If  $P^*$  is a refinement of P, then for a bounded function f

- (a)  $U(P^*, f) \le U(P, f)$
- (b)  $U(P^*,f) \ge U(P,f)$
- (c)  $U(P^*, f) = U(P, f)$
- (d) None of the above

6. If f and g are two positive functions such that  $f(x) \le g(x), \forall x \in [a,b]$  then the improper integral

(a) 
$$\int_{a}^{b} gdx$$
 converges if  $\int_{a}^{b} fdx$  diverges  
(b)  $\int_{a}^{b} fdx$  converges if  $\int_{a}^{b} gdx$  converges  
(c)  $\int_{a}^{b} fdx$  diverges if  $\int_{a}^{b} gdx$  diverges  
(d) Both (b) and (c)

7. The definite integral 
$$\int_{1}^{4} \frac{dx}{(x-1)(4-x)}$$
 is

- (a) Improper integral of first kind
- (b) Improper integral of second kind
- (c) Improper integral of third kind
- (d) None of the above

8. By Frullani's integral 
$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} dx$$
 equals to

- (a)  $2\log \frac{b}{a}$ (b)  $\log \frac{a}{b}$
- (c)  $\log \frac{b}{a}$
- (d)  $\log(a+b)$

9. The integral 
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$$

- (a) Converges
- (b) Diverges
- (c) Both (a) and (b)
- (d) None of the above
- 10. Consider the improper integral

(1) 
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$$
 (11)  $\int_{0}^{1} \frac{dx}{x^{2}}$ 

Then

- (a) (I) is convergent but (II) is divergent
- (b) (I) is divergent but (II) is convergent

- (c) Both (I) and (II) are convergent
- (d) Neither (I) nor (II) is convergent

11. The integral 
$$\int_{2}^{\infty} \frac{2x^2}{x^4 - 1} dx$$
 is

- (a) Convergent
- (b) Divergent
- (c) Neither converge nor diverge
- (d) None of the above
- 12. If the function f(x, y) and  $f_n(x, y)$  exist and continuous in [a, b; c, d] then
- (a) derivative of  $\int_{a}^{b} f(x, y) dx$  with respect to y is not possible to determine
- (b) derivative of  $\int_{a}^{b} f(x, y) dx$  with respect to y is always possible to determine

(c) derivative of  $\int_{a}^{b} f(x, y) dx$  with respect to y is continuous

- (d) None of the above
- 13. The improper integral  $\int_{0}^{\infty} e^{-x^2} \cos yx dx$  is
  - (a) uniformly convergent in  $(-\infty,\infty)$
  - (b) not uniformly convergent in  $(-\infty,\infty)$
  - (c) Divergent
  - (d) None of the above

14. If 
$$f(x, y) = \frac{y^2}{x^2 + y^2}$$
 and  $g(y) = \int_0^1 f(x, y) dx$ , then

(a) g'(0-) = g'(0+)

(b) 
$$g'(0-) \neq g'(0+)$$

- (c)  $g'(0+) = \pi$
- (d) None of the above
- 15. Which of the following is Jordan Curve
  - (a) Parabola
  - (b) Hyperbola
  - (c) Straight line
  - (d) Ellipse

# 16. Choose the correct one

(a) 
$$\int_{-C} fdx + gdy = -\int_{C} fdx + gdy$$
  
(b) 
$$\int_{C} fdx + gdy = -\int_{-C} fdx - gdy$$
  
(c) 
$$\int_{-C} fdx + gdy = -\int_{-C} fdx + gdy$$
  
(d) 
$$\int_{-C} fdx + gdy = \int_{C} fdx - gdy$$

17. The integral  $\int_{C} x^2 dx + xy dy$  taken along the line segment from (1,0) to (0,1) equals

(a) 
$$\frac{-1}{6}$$

(b) 
$$\frac{1}{6}$$
  
(c)  $\frac{1}{2}$   
(d)  $-\frac{1}{2}$ 

18. The value of  $\iint xy(x+y)dxdy$  over the area between  $y-x^2=0$  and y-x=0 is



19. The pointwise limit of sequence of real valued function

$$f_n(x) = \sin x + \frac{x}{n}, \forall x \in IR$$

- (a)  $f(x) = 0, \forall x \in IR$
- (b)  $f(x) = 1, \forall x \in IR$
- (c)  $f(x) = \sin x, \forall x \in IR$
- (d) Does not exist
- 20. The uniform limit of sequence of real valued function

$$f_n(x) = x - \frac{x^n}{n}, \forall x \in [0,1] \text{ is}$$

(a) 
$$f(x) = 0, \forall x$$

(b)  $f(x) = x, \forall x$ 

(c) 
$$f(x) = \begin{cases} 0, x = 0\\ 1, x = 1\\ x, 0 < x < 1 \end{cases}$$

- (d) None of the above
- 21. The sequence  $f_n(x) = x^n$  is
  - (a) Uniformly convergent on [0, k], k < 1
  - (b) Uniformly convergent on [0,1]
  - (c) Not uniformly convergent
  - (d) None of the above
- 22. The infinite series  $\sum_{n=1}^{\infty} \frac{1}{n^3(1+nx^2)}, \forall x \in IR$ 
  - (a) Can be differentiated term by term
  - (b) Cannot be differentiated term by term
  - (c) Both (a) and (b)
  - (d) None of the above

23. The sequence of the function  $f_n(x) = \frac{nx}{1 + n^2 x^2}, x \in IR$  is

- (a) Pointwise convergent
- (b) Pointwise limit  $f(x) = 0, \forall x \in IR$
- (c) Not uniformly convergent in any interval  $\left[a,b
  ight]$  with 0 as interior point

(d) All of the above

24. The series 
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}, p > 1$$

- (a) Converges uniformly for all real values of x
- (b) Does not converge uniformly
- (c) Diverges
- (d) None of the above

25. Let  $f_n(x) = \frac{1}{x+n}$ ,  $x \in [0,b]$ , b > 0 be a sequence of real valued function. Then

- (a) Pointwise limit of  $f_n(x)$  is f(x) = 0
- (b) uniform limit of  $f_n(x)$  is f(x) = 0
- (c) It is not uniformly convegent
- (d) Both (a) and (b)

- B. Fill up the blanks[15(3 from each unit)]
- 1. No upper sum can ever be \_\_\_\_\_ any lower sum.
- 2. A bounded function f defined on [a,b] is R-integrable iff the lower integral

\_\_\_\_\_ the upper integral.

- 3. Every \_\_\_\_\_ function is R-integrable.
- 4. The improper integral  $\int_{a}^{\infty} \frac{dx}{x^{n}}, (a > 0)$  is convergent *iff* \_\_\_\_\_\_.
- 5. The integral  $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$  exists *iff* m and n are \_\_\_\_\_.

Downloaded from www.gzrsc.edu.in

6. The integral 
$$\int_{0}^{\infty} x^{n-1} e^{-x} dx$$
 is convergent *iff*

7. Uniformly convergent improper integral of a continuous function is \_\_\_\_\_ a continuous function.

- 8. The improper integral  $\int_{-1}^{1} \frac{\cos yx}{\sqrt{1-x^2}} dx$  \_\_\_\_\_ uniformly convergent.
- 9. if f(x, y) and  $\frac{\partial}{\partial y} f(x, y)$  are continuous function of x and y for

 $a \le x \le b, c \le y \le d, a, b$  being independent of y, then  $\frac{d}{dx} \int_{a}^{b} f(x,y) dx =$ \_\_\_\_\_.

- 10. A simple close curve is called \_\_\_\_\_ curve.
- 11. The value of the double integral  $\int_{1}^{4} \int_{0}^{\sqrt{y}} e^{\frac{x}{\sqrt{y}}} dx dy$  is \_\_\_\_\_.
- 12. The area of the region bounded by the curve y = x and  $y = x^2$  is \_\_\_\_\_.
- 13. Uniform convergence \_\_\_\_\_ pointwise convergence.

14. Uniform limit \_\_\_\_\_ pointwise limit.

15. Let  $\langle f_n \rangle$  be a sequence of function on I such that  $\lim_{n \to \infty} f_n(x) = f(x), x \in I$ and let  $M_n = \sup \{ |f_n(x) - f(x)| : x \in I \}$ . Then  $\langle f_n(x) \rangle$  converges uniformly on I*iff* \_\_\_\_\_\_.

## **Key Answers**

A. Multiple choice questions

| 1.(c)   | 2.(d)   | 3.(c ) | 4.(d)  | 5.(a)  | 6.(b)  |
|---------|---------|--------|--------|--------|--------|
| 7. (b)  | 8.(c )  | 9.(a)  | 10.(a) | 11.(a) | 12.(b) |
| 13.(a)  | 14.(b)  | 15.(d) | 16.(a) | 17.(a) | 18.(a) |
| 19.(c ) | 20.(c ) | 21.(a) | 22.(a) | 23.(d) | 24.(a) |

25.(d)

Fill in the blanks

1.less than

- 2.Equal to (or = )
- 3.Continuous

4. *n* >1

5. Both positive ( m > 0, n > 0 )

6. *n* > 0

7. Itself

8.ls

9. 
$$\int_{a}^{b} \frac{\partial}{\partial x} f(x, y) dx$$

10.Jordan

11.
$$\frac{14}{3}(e-1)$$
  
12. $\frac{1}{6}$ 

13.implies

14.equal to

15.  $\lim_{n\to\infty}M_n=0$