Subject	$:$ Mathematics
Paper name	$:$ Modern Algebra
Paper no	$:$ Math 361
Semester	$: 6^{\text {th }}$

A. Multiple Choice Question

1. The necessary and sufficient condition for a homomorphism f of a group G with identity e into a group
$\mathrm{G}^{`}$ with kernel K to be an isomorphism of G into $\mathrm{G}^{`}$ is that
a) $K=\phi$
b) $K=(e)$
c) $K=G$
d) $K=G^{`}$
2. If f is a homomorphism of G into G^{\prime} then K is the kernel of f if
a) $K=\{x \in G: f(x)=e\}$
b) $K=\{x \in G: f(x)=0\}$
c) $K=\left\{x \in G: f(x)=e^{`}\right\}$
d) $K=\left\{x \in G: f(e)=e^{`}\right\}$
3.If G is a group, the mapping $f_{a}: G \rightarrow G^{\prime}$ is an inner automorphism if
a) $f_{a}(x)=a^{-1} x a$
b) $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{a} x^{-1} a^{-1}$
c) $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=x a x^{-1}$
d) $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=x^{-1} a x$
4.A subgroup H of a group G is normal if and only if
a) $x^{-1} H x=H$
b) $x H x^{-1}=x$
c) $x H^{-1} x^{-1}=H$
d) $x H x^{-1}=H$
3. If H is a normal subgroup of a group G and K a normal subgroup of G containing H then
a) $G / K \cong(G / H) /(K / H)$
b) $G / K \cong(K / H) /(G / H)$
c) $G / K \cong(H / K) /(H / G)$
d) $G / K \cong(G / H)$
6.The necessary and sufficient condition for a non-empty subset S of a ring R to be a subring are
a) $a \in S, b \in S \Rightarrow a+b \in S$ and $a b \in S$
b) $\mathrm{a} \in \mathrm{S}, \mathrm{b} \in \mathrm{S} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{S}$ and $\mathrm{ab} \in S$
c) $a \in S, b \in S \Rightarrow a+b \in S$ and $a / b \in S$
d) $a \in S, b \in S \Rightarrow a-b \in S$ and $a / b \in S$
7.In the ring of integers I the maximal ideal is
a) 6
b) 10
c) 8
d) 5
4. The necessary and sufficient condition for a non-empty subset K of a field F to be a subfield of F are
a) $\mathrm{a} \in \mathrm{K}, \mathrm{b} \in \mathrm{K} \Rightarrow \mathrm{a}+\mathrm{b} \in \mathrm{K}$ and $\mathrm{a} b^{-1} \in K$
b) $\mathrm{a} \in \mathrm{K}, \mathrm{b} \in \mathrm{K} \Rightarrow \mathrm{a}+\mathrm{b} \in \mathrm{K}$ and $a^{-1} b \in K$
c) $a \in K, b \in K \Rightarrow a-b \in K$ and $a b^{-1} \in K$
d) $\mathrm{a} \in \mathrm{K}, \mathrm{b} \in \mathrm{K} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{K}$ and $a^{-1} b \in K$
5. Which of the following statement is false ?
a) A commutative ring with unity is a field if it has no proper ideal.
b) R is a commutative ring and $a \in R$ then $R a=(r a: r \in R)$ is an ideal of R
c) A field has no proper ideal i.e the only ideals of a field F is F itself and (0)
d) The ring of an integers is not a principal ideal.
10.An ideal S of a ring R is prime if for $a l l a, b \in R$. Then
a) $a b \in S \Rightarrow a \in S$ or $b \in S$
b) ba $\in S \Rightarrow a \in S$ or $b \in S$
c) $a^{-1} \mathrm{~b} \in \mathrm{~S} \Rightarrow a^{-1} \in \mathrm{~S}$ or $\mathrm{b} \in \mathrm{S}$
d) $a b^{-1} \in S \Rightarrow a \in S$ or $b^{-1} \in S$
6. Let f be a homomorphism of a ring R into a ring R ', then
a) $\operatorname{ker} f=\left\{x \in R: f(x)=0^{\prime}\right\}$
b) $\operatorname{ker} f=\{x \notin R: f(x)=0$ ' $\}$
c) $\operatorname{ker} f=\{x \in R: f(x)=0\}$
d) $\operatorname{ker} f=\left\{x \in R: f(x) \neq 0^{\prime}\right\}$
7. Let a be a non-zero element in the Euclidean ring R, then a is a unit if
a) $d(a) \neq d(1)$
b) $d(a)=d(1)$
c) $d(a)>d(1)$
d) d(a) $<$ d(1)
8. Let R be a Euclidean ring and a, b be two non-zero elements in R, the b is a unit in R if
a) $d(a b)<d(a)$
b) $d(a b)>d(a)$
c) $d(a b)=d(a)$
d) $d(a b) \neq d(a)$
14.In a commutative ring R with unity 1 . An element $a \in R$ is a unit in R if there exist an element $b \in R$ such that
a) $a b \neq 1$
b) $a^{-1} b=1$
c) $a b=1$
d) $a / b=1$
9. Which of the following statement is false?
a) The ring of integers is not an Euclidean domain
b) Every field is an Euclidean domain
c) Every Euclidean domain is a PID
d) Every Euclidean domain possesses unity
10. Which of the following set of vectors is linearly independent in $V_{3}(R)$?
a) $\{(1,2,1),(3,1,5),(3,-4,7)\}$
b) $\{(2,-3,1),(3,-1,5),(1,-4,3)\}$
c) $\{(2,1,2),(8,4,8)\}$
d) $\{(-1,2,1),(3,0,-1),(-5,4,3)\}$
11. Which of the following functions T from R^{2} into R^{2} is a linear transformation?
a) $T\left(x_{1}, x_{2}\right)=\left(1+x_{1}, x_{2}\right)$
b) $T\left(x_{1}, x_{2}\right)=\left(x_{1}{ }^{2}, x_{2}\right)$
c) $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 0\right)$
d) $T\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$
12. The necessary and sufficient condition for a non-empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ to be a subspace of V are
a) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha-\beta \in W$ and $a \alpha \in W$
b) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha+\beta \in W$ and $a \alpha \in W$
c) $\alpha \in W, \beta \in W, a \notin F \Rightarrow \alpha-\beta \in W$ and $a \alpha \in W$
d) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha / \beta \in W$ and $a \alpha \in W$
19.If S and T are finite subsets of a vector space $V(F)$, then
a) $\mathrm{S} \subseteq \mathrm{T} \Rightarrow \mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{T})$
b) $\mathrm{S} \supseteq \mathrm{T} \Rightarrow \mathrm{L}(\mathrm{S}) \supseteq \mathrm{L}(\mathrm{T})$
c) $S \cup T \Rightarrow L(S) \cup L(T)$
d) $S \cap T \Rightarrow L(S) \cap L(T)$
20.If F is a field of complex number then the vector $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in $V_{2}(F)$ are linearly dependent if and only if
a) $a_{1} a_{2}-b_{1} b_{2}=0$
b) $a_{1} b_{2}-b_{1} a_{2}=0$
c) $a_{1} b_{2}+b_{1} a_{2}=0$
d) $a_{1} b_{1}+a_{2} b_{2}=0$
21.If $\mathrm{A}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, the eigenvalues of A are
a) $1,-1$
b) 1,0
c) i, -i
d) $1, \mathrm{i}$
22.Let V and W be vector spaces over the field F . Let T be a linear transformation from V into W . If V is finite dimensional then,
a) $\operatorname{rank} \mathrm{T}+$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
b) $\operatorname{rank} \mathrm{T}-$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
c) $\operatorname{rank} T+\operatorname{dim} V=$ nullity T
d) $\operatorname{rank} T-\operatorname{dim} V=$ nullity T
13. A necessary and sufficient condition for a square matrix A of order n over a field F to be diagonisable is that
a) A has exactly n linearly independent eigen vectors
b) A has exactly n linearly dependent eigen vectors
c) A has exactly $(n+1)$ linearly independent eigenvectors
d) A has exactly $(\mathrm{n}+1)$ linearly dependent eigenvectors
14. Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y, z)=(y+z, y-z)$. Find the matrix T with respect to the ordered basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ and $\{(1,0),(0,1)\}$
a) $\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & -1\end{array}$
b) $\begin{array}{ccc}0 & 1 & 1 \\ 0 & 1 & -1\end{array}$
c) $\begin{array}{lll}0 & 1 & -1 \\ 0 & 1 & -1\end{array}$
d) $\begin{array}{ccc}0 & 1 & 1 \\ 0 & -1 & 1\end{array}$
15. A square matrix A of order n is similar to a square matrix B of order n if
a) $\mathrm{B}=P^{-1} A P$, where P is a symmetric matrix
b) $\mathrm{B}=\mathrm{PAP}$, where P is skew-symmetric matrix
c) $\mathrm{B}=P^{-1} A P$, where P is a singular matrix
d) $\mathrm{B}=P^{-1} A P$, where P is non-singular matrix
B. Fill up the blanks
16. The set Z of all self-conjugate elements of a group G is called \qquad .
17. If f is a homomorphism of G into itself, then f is called \qquad
18. Every homomorphic image of a group G is \qquad to some quotient group of G .
19. A finite commutative ring without zero divisors is a \qquad _.
20. An arbitrary intersection of \qquad is a subrings.
21. An ideal generated by a single element of itself is called \qquad .
22. If f is a homomorphism of a ring R into a ring R^{\prime}, then the kernel of f is \qquad of R
23. Every homomorphic image of a commutative ring is \qquad .
24. Let R be a Euclidean domain and $a \& b$ be two non-zero elements of R. Then b is non-unit in R if
\qquad .
10.The intersection of any two subspaces $W_{1} \& W_{2}$ of a vector space $V(F)$ is also a \qquad of $V(F)$.
25. The \qquad of two subspaces is not necessarily a subspaces.
26. Let W_{1}, W_{2} be two subspaces of a finite dimensional vector space $V(F)$, then $\operatorname{dim}\left(W_{1}+W_{2}\right)=$

13 If $\mathrm{A}=\left(\begin{array}{cc}0 & 1 \\ -4 & 4\end{array}\right)$, the eigenvalues of A are \qquad -
14. If V is finite dimensional, the rank of T is the \qquad of the range of T .
15. Similar matrices have the same \qquad polynomial.

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

KEY ANSWER

A. Multiple choice questions
1.b) 2.c) 3.a) 4.d) 5.a) 6.b) $7 . d$) 8.c) 9.d) 10.a) 11.a) $12 . b$) 13.c) 14.c) 15.a) 16.b) 17.c) 18.a) 19.a) 20.b) 21.c) 22.a) 23.a) 24.b) 25.d)
B. Fill up the blanks

1. Center of G
2. Endomorphism
3. Isomorphic
4. Field
5. Subring
6. Principal ideal
7. An ideal
8. Commutative
9. $d(a b)>d(a)$
10. subspace
11. union
12. $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$
13. $(2,2)$
14. Dimension
15. characteristics
