Subject	: Mathematics
Paper name	: Modern Algebra
Paper no	: Math 361
Semester	: 6 th

A. Multiple Choice Question

1. The necessary and sufficient condition for a homomorphism f of a group G with identity e into a group G` with kernel K to be an isomorphism of G into G` is that

а) К=ф

b) K=(e)

c) K=G

d) K=G`

2. If f is a homomorphism of G into G` then K is the kernel of f if a) $K = \{x \in G: f(x)=e\}$ b) $K = \{x \in G: f(x)=0\}$ c) $K = \{x \in G: f(x)=e`\}$ d) $K = \{x \in G: f(e)=e`\}$

3.If G is a group, the mapping $f_a: G \rightarrow G$ ` is an inner automorphism if a) $f_a(x)=a^{-1}xa$ b) $f_a(x)=ax^{-1}a^{-1}$ c) $f_a(x)=xax^{-1}$ d) $f_a(x)=x^{-1}ax$

4.A subgroup H of a group G is normal if and only if a) $x^{-1}Hx = H$ b) $xHx^{-1} = x$ c) $xH^{-1}x^{-1} = H$ d) $xHx^{-1} = H$

5.If H is a normal subgroup of a group G and K a normal subgroup of G containing H then a) $G/K \cong (G/H)/(K/H)$ b) $G/K \cong (K/H)/(G/H)$ c) $G/K \cong (H/K)/(H/G)$ d) $G/K \cong (G/H)$

6.The necessary and sufficient condition for a non-empty subset S of a ring R to be a subring are a) $a\in S, b\in S \Rightarrow a+b \in S$ and $ab \in S$ b) $a\in S, b\in S \Rightarrow a-b \in S$ and $ab \in S$ c) $a\in S, b\in S \Rightarrow a+b \in S$ and $a/b \in S$ d) $a\in S, b\in S \Rightarrow a-b \in S$ and $a/b \in S$

7.In the ring of integers *I* the maximal ideal isa) 6b) 10c) 8

d) 5

8. The necessary and sufficient condition for a non-empty subset K of a field F to be a subfield of F are

a) $a \in K$, $b \in K \Rightarrow a+b \in K$ and $ab^{-1} \in K$ b) $a \in K$, $b \in K \Rightarrow a+b \in K$ and $a^{-1}b \in K$ c) $a \in K$, $b \in K \Rightarrow a-b \in K$ and $ab^{-1} \in K$ d) $a \in K$, $b \in K \Rightarrow a-b \in K$ and $a^{-1}b \in K$

9. Which of the following statement is false?

a) A commutative ring with unity is a field if it has no proper ideal.

b) R is a commutative ring and a \in R then Ra = (ra : r \in R) is an ideal of R

c) A field has no proper ideal i.e the only ideals of a field F is F itself and (0)

d) The ring of an integers is not a principal ideal.

```
10.An ideal S of a ring R is prime if for all a, b \in R. Then
```

a) $ab\in S \Rightarrow a\in S \text{ or } b\in S$ b) $ba\in S \Rightarrow a\in S \text{ or } b\in S$ c) $a^{-1}b\in S \Rightarrow a^{-1}\in S \text{ or } b\in S$ d) $ab^{-1}\in S \Rightarrow a\in S \text{ or } b^{-1}\in S$

11.Let f be a homomorphism of a ring R into a ring R', then a) ker f = $\{x \in R : f(x) = 0'\}$ b) ker f = $\{x \notin R : f(x) = 0'\}$

c) ker f = { $x \in R : f(x) = 0$ } d) ker f = { $x \in R : f(x) \neq 0$ `}

12.Let a be a non-zero element in the Euclidean ring ${\sf R}$, then a is a unit if

a) d(a) ≠ d(1)
b) d(a) = d(1)
c) d(a) > d(1)
d) d(a) < d(1)

13.Let R be a Euclidean ring and a,b be two non-zero elements in R, the b is a unit in R if a) d(ab) < d(a)b) d(ab) > d(a)c) d(ab) = d(a)d) $d(ab) \neq d(a)$

14. In a commutative ring R with unity 1. An element $a \in R$ is a unit in R if there exist an element $b \in R$ such that

a) $ab \neq 1$ b) $a^{-1}b = 1$ c) ab = 1d) a/b = 1

15. Which of the following statement is false?

a) The ring of integers is not an Euclidean domain

b) Every field is an Euclidean domain

c) Every Euclidean domain is a PID

d) Every Euclidean domain possesses unity

16.Which of the following set of vectors is linearly independent in V₃(R)?
a) {(1,2,1),(3,1,5),(3,-4,7)}
b) {(2,-3,1),(3,-1,5),(1,-4,3)}
c) {(2,1,2),(8,4,8)}
d) {(-1,2,1),(3,0,-1),(-5,4,3)}

17.Which of the following functions T from R² into R² is a linear transformation? a) T $(x_1, x_2) = (1+x_1, x_2)$ b) T $(x_1, x_2) = (x_1^2, x_2)$ c) T $(x_1, x_2) = (x_1-x_2, 0)$ d) T $(x_1, x_2) = (\sin x_1, x_2)$

18. The necessary and sufficient condition for a non-empty subset W of a vector space V(F) to be a subspace of V are

a) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha - \beta \in W \text{ and } a\alpha \in W$ b) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha + \beta \in W \text{ and } a\alpha \in W$ c) $\alpha \in W, \beta \in W, a \notin F \Rightarrow \alpha - \beta \in W \text{ and } a\alpha \in W$ d) $\alpha \in W, \beta \in W, a \in F \Rightarrow \alpha/\beta \in W \text{ and } a\alpha \in W$

19.If S and T are finite subsets of a vector space V(F), then a) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ b) $S \supseteq T \Rightarrow L(S) \supseteq L(T)$ c) $S \cup T \Rightarrow L(S) \cup L(T)$ d) $S \cap T \Rightarrow L(S) \cap L(T)$

20.If F is a field of complex number then the vector (a_1, b_1) and (a_2, b_2) in V₂(F) are linearly dependent if and only if

a) $a_1a_2 - b_1b_2 = 0$ b) $a_1b_2 - b_1a_2 = 0$ c) $a_1b_2 + b_1a_2 = 0$ d) $a_1b_1 + a_2b_2 = 0$

21.If A = $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, the eigenvalues of A are a) 1, -1 b) 1, 0 c) i, -i d) 1, i

22.Let V and W be vector spaces over the field F. Let T be a linear transformation from V into W . If V is finite dimensional then,

a) rank T + nullity T = dim V b) rank T – nullity T = dim V c) rank T + dim V = nullity T d) rank T – dim V = nullity T

23. A necessary and sufficient condition for a square matrix A of order n over a field F to be diagonisable is that

a) A has exactly n linearly independent eigen vectors

b) A has exactly n linearly dependent eigen vectors

c) A has exactly (n+1) linearly independent eigenvectors

d) A has exactly (n+1) linearly dependent eigenvectors

24.Let T: $R^3 \rightarrow R^2$ be a linear transformation defined by T(x,y,z) = (y+z, y-z). Find the matrix T with respect to the ordered basis {(1,0,0),(0,1,0),(0,0,1)} and {(1,0), (0,1)}

a) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$

25. A square matrix A of order n is similar to a square matrix B of order n if

a) B = $P^{-1}AP$, where P is a symmetric matrix

b) B = PAP, where P is skew-symmetric matrix

c) B = $P^{-1}AP$, where P is a singular matrix

d) B = $P^{-1}AP$, where P is non-singular matrix

B. Fill up the blanks

1. The set Z of all self-conjugate elements of a group G is called ______.

2. If f is a homomorphism of G into itself , then f is called _____

3. Every homomorphic image of a group G is ______ to some quotient group of G.

4. A finite commutative ring without zero divisors is a______.

5. An arbitrary intersection of ______ is a subrings.

6. An ideal generated by a single element of itself is called _____

7. If f is a homomorphism of a ring R into a ring R`, then the kernel of f is ______ of R

8. Every homomorphic image of a commutative ring is ____

9. Let R be a Euclidean domain and a&b be two non-zero elements of R. Then b is non-unit in R if

10. The intersection of any two subspaces $W_1 \& W_2$ of a vector space V(F) is also a _____ of V(F). 11. The _____ of two subspaces is not necessarily a subspaces.

12. Let W_1, W_2 be two subspaces of a finite dimensional vector space V(F), then dim(W_1+W_2) =

 $\frac{13 \text{ If A}}{13 \text{ If A}} = \begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix}, \text{ the eigenvalues of A are } .$ 14. If V is finite dimensional, the rank of T is the ______ of the range of T.

15. Similar matrices have the same _____ polynomial.

KEY ANSWER

A. Multiple choice questions

1.b) 2.c) 3.a) 4.d) 5.a) 6.b) 7.d) 8.c) 9.d) 10.a) 11.a) 12.b) 13.c) 14.c) 15.a) 16.b) 17.c) 18.a) 19.a) 20.b) 21.c) 22.a) 23.a) 24.b) 25.d)

B. Fill up the blanks

- 1. Center of G
- 2. Endomorphism
- 3. Isomorphic
- 4. Field
- 5. Subring
- 6. Principal ideal
- 7. An ideal
- 8. Commutative
- 9. d(ab)>d(a)
- 10. subspace
- 11. union
- 12. dim W_1 + dim W_2 dim ($W_1 \cap W_2$)
- 13. (2,2)
- 14. Dimension
- 15. characteristics