Subject : Mathematics
Paper Name : Vector calculus and Solid Geometry
Paper No: IV
Semester : IV Semester
A. Multiple choice questions: [25(5 from each unit)]
B.

1. If \hat{a} and \hat{b} are two mutually perpendicular proper vectors, then $\hat{a} \times(\hat{b} \times \hat{a})$ is parallel to
a) \hat{a}
b) \hat{b}
c) $\hat{a} \times \hat{b}$
d) None of the above
2. The unit tangent vector to the space curve $\vec{r}=t \hat{\imath}+t^{2} \hat{\jmath}+t^{3} \hat{k}$ at $t=0$ is
a) $\hat{1}$
b) $\hat{\jmath}$
c) \hat{k}
d) None of the above
3. The value of $[\hat{i} \hat{k} \hat{j}]$ is
a) 1
b) -1
c) 0
d) None of the above
4. The projection of $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$ is
a) $\frac{5}{6}(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
b) $\frac{6}{5}(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
c) $\frac{6}{5}(\hat{\imath}-2 \hat{\jmath}+\hat{k})$
d) $\frac{5}{6}(\hat{\imath}-2 \hat{\jmath}+\hat{k})$
5. If \hat{a} and \hat{b} are non-zero vectors and $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are
a) perpendicular to each other
b) parallel to each other
c) neither parallel nor perpendicular
d) None of the above
6. If the vector $\vec{V}=y^{2} z \hat{\imath}+a x y z \hat{\jmath}+x^{2} \hat{k}$ be conservative vector, then a is equal to
a) 0
b) 2
c) 1
d) None of the above

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

7. A vector f is said to be irrotational if
a) $\operatorname{div} \vec{f}=0$
b) $\operatorname{curl} \vec{f}=0$
c) $\operatorname{grad}(\operatorname{div} \vec{f})=0$
d) $\operatorname{curl}(\operatorname{curl} \vec{f})=0$
8. If $\vec{f}=(a x+3 y+4 z) \hat{\imath}+(x-2 y+3 z) \hat{\jmath}+(3 x+2 y-z) \hat{k}$ is solenoidal, then the value of a is
a) 5
b) 0
c) 2
d) 3
9. If \vec{a} is a constant function, then \vec{a} is
a) both solenoidal and irrotational
b) solenoidal
c) irrotational
d) neither solenoidal nor irrotational
10. If \vec{a} is any vector and $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, then $(\vec{a} \cdot \nabla) \vec{r}$ is
a) \vec{a}
b) \vec{r}
c) $\vec{a} \times \vec{r}$
d) None of the above
11. Which of the following is correct for $3 x^{2}+4 x y+5 y^{2}+6 x+4 y+7=0$?
(a) $e=1$
(b) $e<1$
(c) $e>1$
(d) none of these
12. The pair of separate straight lines represented by $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$ is :
(a) $2 x-y+3=0,3 x+4 y+1=0$
(b) $2 x-y-3=0,3 x+4 y-1=0$
(c) $2 x-y+3=0,3 x+4 y-1=0$
(d) $2 x-y-3=0,3 x+4 y+1=0$
13. The chord of contact of the conic $7 x^{2}-8 x y+5 y^{2}-4 X-6 Y+5=0$ with respect to $(-1,2)$ is :
(a) $17 x-11 y-1=0$
(b) $17 x+11 y+1=0$
(c) $17 x+11 y-1=0$
(d) None of these

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

14. The condition that the pair of lines $A x^{2}+2 H x y+B y^{2}=0$ are conjugate diameters of the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ is :
(a) $A b^{2}+B a^{2}=0$
(b) $\mathrm{Aa}+\mathrm{Bb}=0$
(c) $A^{2} a+B^{2} b=0$
(d) $\mathrm{Aa}^{2}+\mathrm{Bb}^{2}=0$
15. The equation of directrix of the conic $r \sin ^{2}(\theta / 2)=1$ is :
(a) $(2 / r)=-\cos \theta$
(b) $(2 / r)=\cos \theta$
(c) $2 r=\cos \theta$
(d) none of these
16. The intercepts made on the X, Y and Z axes by the plane $3 x-4 y+6 z-12=0$ are:
(a) $2,4,-3$
(b) $4,-3,2$
(c) $3,4,6$
(d) 4,3,6
17. The equation of the plane through the points $(0,0,0),(1,1,0)$ and $(0,1,1)$ is :
(a) $x-y-z=0$
(b) $x+y-z=0$
(c) $x+y+z=0$
(d) $x-y+z=0$
18. The magnitude of the short distance between the line

$$
\frac{x}{4}=\frac{y+1}{3}=\frac{z-2}{2} \text { and } 5 x-2 y-3 z+6=0=x-3 y+2 z-3 \text { is : }
$$

(a) $17 / 39$
(b) $\sqrt{6} / 17$
(c) $17 \sqrt{6}$
(d) $17 \sqrt{6} / 39$
19. The equation of the plane through the point $(2,3,5)$ and parallel to the plane $2 x-4 y+3 z=9$ is:
(a) $2 x-4 y+3 z=7$
(b) $x-y+z=0$
(c) $3 x-4 y+2 z=0$
(d) none of these
20. The angle of inclination of the line $x+y=0, z=0$ with z-axis is:
(a) $\pi / 2$
(b) $\pi / 3$
(c) $\pi / 4$
(d) $\pi / 6$

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

21. Which of the following coordinate is the end of diameter if the sphere $x^{2}+y^{2}+z^{2}-6 z=0$ passes through them ?
(a) $(2,0,-2)$ and $(-2,1,2)$
(b) $(2,-1,-2)$ and $(1,2,0)$
(c) $(2,-2,4)$ and $(-2,2,2)$
(d) none of these
22. Since $f(x, y)=0$ represent a cylinder when the fixed line is the z -axis and the guiding curve is $f(x, y)=0$ and $z=0$, then which of the following statement is true?
(a) The cylinder is parallel to z-axis.
(b) The cylinder is parallel to z -axis.
(c) The cylinder is perpendicular to z -axis.
(d) The cylinder is parallel to y-axis.
23. The condition that the plane $l x+m y+n z=0$ touches $a x^{2}+b y^{2}+c z^{2}=0$ is:
(a) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
(b) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=0$
(c) $\frac{a^{2}}{m}+\frac{b^{2}}{l}+\frac{c^{2}}{n}=0$
(d) $\frac{l^{2}}{a}+\frac{m^{2}}{b}+\frac{n^{2}}{c}=0$
24. The centre and radius of the circle $x^{2}+y^{2}+z^{2} x+y+z-4=0, x+y+z=0$ is:
(a) $(0,0,0) \& 2$
(b) $(1,0,0) \& 1$
(c) $(0,1,0) \& 2$
(d) $(1,1,0) \& 1$
25. The right circular cylinder of radius 4 and axis is the line $x=2 y=-z$ is:
(a) $x^{2}+y^{2}+z^{2}+5 y z-3 x y+4 x z=0$
(b) $5 x^{2}+8 y^{2}+5 z^{2}+4 y z+8 z x-4 x y-144=0$
(c) $5 x^{2}+5 y^{2}+8 z^{2}+4 y z-8 z x+x y+144=0$
(d) none of these

B. Fill in the blanks: (3 from each unit)

1. The vector of magnitude 6 which is perpendicular to both the vectors $\vec{a}=4 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=$ $-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ is \qquad
2. If $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \vec{b}=\hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ and $\vec{c}=\hat{\imath}+\hat{\jmath}+6 \hat{k}$, then the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is \qquad
3. The value of $(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})$ is \qquad
4. If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and \vec{w} is a constant vector, then $\vec{w}=$ \qquad where $\vec{V}=\vec{w} \times \vec{r}$
5. If $=x^{2} y+2 x y z+z^{2}$, then $\operatorname{curl} \operatorname{grad} f=$ \qquad
6. The value of $\nabla \cdot(\nabla \times \vec{F})$ is \qquad
7. The common tangent of the circle $x^{2}+y^{2}=4 a x$ and the parabola $y^{2}=4 a x$ is \qquad .
8. The transformed form of the curve $3 x^{2}+4 y^{2}-2 x-y+2=0$ reffered to the parallel axes through the point $(-1,1)$ is \qquad .
9. A set of rectangular axes must be turned without the change of origin so that the expression $7 x^{2}+4 x y+3 y^{2}$ will be transformed into the form $a x^{2}+b y^{2}$, then the value of a and b are \qquad _.
10. The intercepts on x -axis by the plane $x+y+2 z=2$ is \qquad .
11. The distance of the point $(4,3,5)$ from xz-plane is \qquad .
12. The angle between the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane $x+2 y+z-3=0$ is \qquad .
13. If the vertex of the right circular cone is the origin and x-axis is the axis of the cone, and the direction cosine of the axis be ($1,0,0$). Then the equation of the cone is \qquad -.
14. The angle of intersection of the spheres $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+10=0$ and $x^{2}+y^{2}+z^{2}-6 x-2 y+2 z+2=0$ is \qquad .
15. The region where a plane cuts a sphere is known as \qquad .

Answer Key:

A. 1. (b)
2. (a)
3. (b)
4. (d)
5. (a)
6. (b)
7. (b)
8. (d)
9. (a)
10. (a)
11.(b)
12.(c)
13.(a)
14.(d)
15.(a)
16.(b)
17.(d)
18.(d)
19.(a)
20.(c)
21.(c)
22.(b)
23.(d)
24.(a)
25. (b)
B.

1. $(-\hat{\imath}+2 \hat{\jmath}+2 \widehat{k})$
2.5
2. $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \overrightarrow{\mathbf{a}}$
3. $\frac{1}{2} \operatorname{curl} \overrightarrow{\mathrm{~V}}$
4. 0
5. 0
6. $\mathrm{x}=0$
7. $3 x^{\prime 2}+4 y^{\prime 2}-8 x^{\prime}+9 y^{\prime}+10=0$
$9.21 \&-11$
10.2
8. 3units
9. $\sin ^{-1} \sqrt{\frac{2}{27}}$
10. $y^{2}+z^{2}=x^{2} \tan ^{2} \theta$
11. $\cos ^{-1}(2 / 3)$
12. Circle
