2016

(2nd Semester)

CHEMISTRY

SECOND PAPER

(Inorganic Chemistry—I)

Full Marks: 55

Time: 2½ hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- **1.** (a) What is meant by the 'dual' nature of electron? Derive the equation $\lambda = h/p$, where $\lambda =$ wavelength, h = Planck's constant and p = momentum of the particle.
 - (b) State Hund's rule of maximum multiplicity. Calculate the wavelength (λ) of a particle of mass 1 mg moving with a velocity of $12 \cdot 5$ m s⁻¹ provided $h = 6 \cdot 625 \times 10^{-34}$ kg m² s⁻¹. 1+2=3

OR

- **2.** (a) Write Schrödinger wave equation for a three-dimensional box, explaining the symbols.

1

2

4

1

3

3

(c) Calculate σ (screening effect) and $Z_{\rm eff}$ (effective nuclear charge) for 4s electron in Mn (Z=25).

State Heisenberg uncertainty principle.

- **3.** (a) Discuss the position of hydrogen in the periodic table.
 - (b) Explain why the atomic radii of representative elements increase from top to bottom in the periodic table.
 - (c) Balance the following redox reaction in acidic medium:

$$MnO_4^- + C_2O_4^{-2} \rightarrow Mn^{+2} + CO_2$$

OR

- **4.** (a) How are electron affinity and ionization potential related to electronegativity?
 - (b) Calculate the equivalent weight of $KMnO_4$ in acidic solution. 3 Given:

Atomic weight of K = 39.1Atomic weight of Mn = 95.9Atomic weight of O = 16.0

G16/228a

(Turn Over)

G16**/228a**

(Continued)

	(c)	Explain why Group IA metals (Li, Na, K, Rb, Cs) have very low first ionization energies.	3	(c)	Discuss with suitable examples the stereochemistry of complexes with coordination number six.	4				
5.	(a)	Explain why ice has lesser density than water.	2	9. (a) (b)		1				
	(b)	Explain why F_2 is non-polar, HF is polar and LiF is ionic in character. $1+1\frac{1}{2}+1\frac{1}{2}$	=4	(2)	(i) Nuclear binding energy					
	(c)	Define bond moment.	1		(ii) Mass defect (iii) Packing fraction					
6.	(a)	OR What is dipole moment?	1	(c)	What is half-life period of a radioactive element? Write the formula.	2				
	(b)	Discuss the salient features of valence bond theory of covalent compound.	4		OR					
	(c)	Which one (H ₂ O or HCl) will have higher boiling point and why?	2	0. (a)	Define radioactive equilibrium.	1				
7.	(a)	Write the IUPAC name for $[Co(N_3)(NH_3)_5]SO_4$ compound.	1	(b)	Discuss the effect of the value of neutron multiplication factor K , on a fission chain reaction.					
	(b)	Discuss two salient features of geometrical isomerism. 1+1	=2	(c)	How many α and β particles need to be emitted by $^{226}_{88}$ Ra to produce eventually	-				
	(c)	Explain with examples inner sphere complexes and outer sphere complexes.	4		²⁰⁶ ₈₂ Pb?	3				
		OR			***					
8.	(a)	What is complex ion?	1		2 2 2					
	(b)	What is optical isomerism? Explain with suitable example. 1+1	=2							

G16**/228a**

CHEM/II/02

Subject Code : CHEM/II	/02	Booklet No. A					
To be filled in by the C		Date Stamp					
DEGREE 2nd Semester (Arts / Science / Comm) Exam., Subject	2016						
Paper		To be filled in by the Candidate					
INSTRUCTIONS TO CAND	IDATES	DEGREE 2nd Semester					
 The Booklet No. of this scrip quoted in the answer scrip descriptive type question versa. This paper should be ANSWITTED. 	t meant for s and vice ERED FIRST	(Arts / Science / Commerce / Description (Arts / Science / Commerce / Exam., 2016 Roll No.					
and submitted within $\frac{45}{5}$ of the commencement Examination.		Regn. No					
3. While answering the quest booklet, any cutting, era writing or furnishing mor answer is prohibited. Any if required, should be do the main Answer Book. I given in each question followed for answering th only.	sing, over- e than one rough work, ne only on instructions should be	Subject Paper Descriptive Type Booklet No. B					
Signature of Scrutiniser(s)	Signature of Examiner(s)	Signature of Invigilator(s)					

/228

CHEM/II/02

2 0 1 6

(2nd Semester)

CHEMISTRY

SECOND PAPER

(Inorganic Chemistry—I)

(PART : A—OBJECTIVE)

(Marks : 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks* : 5)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1 \times 5 = 5$

- **1.** Which of the following sets of quantum numbers is possible?
 - (a) n 4, l 2, m 2, s 2
 - (b) n 4, l 2, m 2, s $\frac{1}{2}$ ()
 - (c) n + 1 + 2, m + 2, s + 1 ()
 - (d) n 4, l 0, m 0, s 0 ()

/228

2.	Which of the following is not consistent in regards to atomic radii?										
	(a)	Li > Be >	> B	> C		()				
	(b)	Cl > Cl		()						
	(c)	K > K		()						
	(d)	$A1^3 > M_8$	g^2		()					
3.	Whi	ich of the	follo	owing	g ha	s T-s	shape	d s	truc	ture	?
	(a)	ClF ₃	()							
	(b)	SO_3	()							
	(c)	BF_3	()							
	(d)	${ m TiO}_2$	()							
4.	All strong-field ligand complexes with coordination number four force										
	(a)	tetraheda	ıl st	ereo	chen	nistry	7	()		
	(b) square planar stereochemistry ()										
	(c)	bi-pyrimi	dal	stere	eoch	emis	try		()	
	(d)	octahedra	ıl st	ereo	chen	nistry	7	()		

5. The SI unit of radioactivity is

(a) curie, Ci ()

(b) rutherford, Ru ()

(c) becquerel, Bq ()

(d) neutrino, Nu ()

(4)

SECTION—B

(*Marks* : 15)

Answer the following questions :

3×5=15

1. Explain why an electron orbital can accommodate maximum two electrons only.

- **2.** State Fajans' rule. Explain which of the following cations will have greater polarising power:
 - (a) Mg^2
 - (b) A1³

(6)

3. Is iodometry a redox reaction? Explain.

(7)

4. What kind of isomerism is exhibited by $[Co(en)_3]^3$ (en = ethylenediamine)? Draw the relevant structures.

5. State the group displacement law for radioactive elements.

* * *

G16—1100**/228**

CHEM/II/02