2016

(1st Semester)

CHEMISTRY

FIRST PAPER (CHEM-111)

(Organic Chemistry—I)

Full Marks: 55

Time: 2½ hours

(PART : B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

- Explain how hybridization affects the concept of bond length and bond energy taking suitable examples.
 - Draw the orbital structure of—
 - (i) alkene;
 - (ii) ketone.

 $1\frac{1}{2} \times 2 = 3$

OR

- Discuss the shape of the following molecules from VSEPR theory: $1 \times 4 = 4$
 - (*i*) BF₃
 - (ii) Acetylene
 - (iii) CH₃
 - (iv) R—CN
 - Explain how H-bonding affects the boiling point and solubility of organic compounds. $1\frac{1}{2} \times 2 = 3$
- Explain the following:

 $1 \times 4 = 4$

- (i) Electromeric effect
- (ii) Hyperconjugation
- (iii) Carbenes
- (iv) Aromaticity
- Explain why free radicals are very reactive. Give examples. 3

OR

- (i) Discuss the role of inductive effect **4.** (a) in the acidity of chloroacetic acid. 1½
 - (ii) What do you understand by electrophiles? Give two examples. 1½

- (b) Discuss the concept of Hückel 4n 2 rule for aromaticity.
- **5.** (a) Discuss the concept of homo- and hetero-topocity. $1\frac{1}{2} \times 2 = 3$
 - (b) Discuss the geometrical isomerism of oxime and alicyclic compound. $2\times2=4$

OR

- **6.** (a) Assign R- or S-configuration for the following: 1×4=4
 - (i) NH₃ CH₂CH₃ CH₃
- (ii) H CH₂OH
- (iii) HO—NH₂
- (iv) H₃C CH₂OH
- (b) Explain the following in brief: $1\times3=3$
 - (i) Racemization
 - (ii) Prostereoisomerism
 - (iii) Relative configuration
- 7. (a) What is called 1,3-Diaxial interaction?

 Compare the stability of boat form and chair form of cyclohexane. 1+3=4

(b) Discuss the conformational isomerism of *n*-butane with energy diagram.

OR

- **8.** (a) Explain the difference between configuration and conformation. 2
 - (b) Draw Sawhorse and Newman projection formula for ethane.
 - (c) Discuss the conformational isomers of cyclohexane with energy profile. 3
- **9.** (a) Explain Saytzeff's rule with example. 3
 - (b) Explain the influence of the following on the substitution reaction: $2 \times 2 = 4$
 - (i) Structure of substrate
 - (ii) Nature of nucleophile

OR

- **10.** (a) Explain the concept of $S_N 1$ type of reaction.
 - (b) Explain the concept of regioselectivity in elimination reaction using Hoffman's rule. Take suitable example.

* * *

3

2

3

4

Subject Code : $\mathbf{I}/_{\mathtt{CHEM}}$ (i)	Booklet No. A	
	Date Stamp	
To be filled in by the Candidate		
DEGREE 1st Semester (Arts / Science / Commerce /) Exam., 2016		
Subject	To be filled in by the Candidate	
INSTRUCTIONS TO CANDIDATES	DEGREE 1st Semester	
1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.	(Arts / Science / Commerce /) Exam., 2016 Roll No.	
2. This paper should be ANSWERED FIRST and submitted within 45 minutes of the commencement of the Examination.	Regn. No.	
3. While answering the questions of this	Subject	
booklet, any cutting, erasing, over- writing or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.	Paper Descriptive Type Booklet No. B	
Signature of Signature of Scrutiniser(s) Examiner(s)	Signature of Invigilator(s)	

/20

I/CHEM (i)

0	Λ	1	6
4	U		U

(1st Semester)

CHEMISTRY

FIRST PAPER (CHEM-111)

(Organic Chemistry—I)

(PART : A—OBJECTIVE)

(Marks : 20)

The figures in the margin indicate full marks for the questions

SECTION—I

(*Marks* : 5)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1\times5=5$

- 1. From VSEPR theory, the shape of CH₃ is
 - (a) tetrahedral ()
 - (b) trigonal planar ()
 - (c) pyramidal ()
 - (d) linear ()

/20

2.	Hon	nolytic bond cleavage will lead to
	(a)	radical species ()
	(b)	ionic species ()
	(c)	neutral species ()
	(d)	None of the above ()
3.	Mes	o compounds are optically inactive because
	(a)	the molecule has point or plane of symmetry ()
	(b)	of racemic mixture ()
	(c)	the molecule can rotate freely ()
	(d)	None of the above ()
4	The	most stable conformation of <i>n</i> -butane is
7.		
	(<i>u</i>)	completely eclipsed ()
	(b)	staggered (anti) ()
	(c)	partially eclipsed ()
	(d)	partially staggered (gauche) ()
I/CHEM (i)/20		

5.	In $S_{N}2$ reaction, the stereochemistry of the product molecule will result in				
	(a)	retention of configuration ()			
	(b)	racemic mixture ()			
	(c)	inversion of configuration ()			
	(d)	None of the above ()			

(4)

SECTION—II

(*Marks* : 15)

Answer the following questions :

 $3 \times 5 = 15$

1. Explain why alcohol is soluble in water but kerosene is insoluble.

2. Explain with example, the difference between intraand inter-molecular hydrogen bonding.

3. Explain in brief, the concept of chemoselectivity.

4. Explain in brief, the concept of flag pole-flag pole interaction.

5. Explain with examples, the difference between a nucleophile and a base.

* * *

G7—300**/20** I/CHEM (i)